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Abstract

This thesis comprises a trio of separate yet thematically-linked investigations within

the field of electronic structure that address challenging problems to which quantum

Monte Carlo, the most accurate electronic structure method capable of treating large

extended systems, has been applied only rarely or indeed never before.

The first is the study of polarization and localization in many body systems.

Density functional and variational quantum Monte Carlo methods are used to ex-

amine the behaviour of the many-electron localization length near band insulator to

metal transitions in various one- and two-dimensional model systems. We examine

when the localization length, known to be infinite in metals and finite in insulators

and assumed to diverge at a metal-insulator transition, serves as a useful diagnostic

of the transition. We also present a novel derivation of the formulae for polarization

and localization in many body systems that expresses the connection of these two

quantities to the concept of Many Body Wannier Functions.

The second is a study of the surface energy of the electron gas. The electron

gas, or ‘jellium’, is an important benchmark system for electronic structure methods

and serves as a simple model for metals. We apply diffusion Monte Carlo (DMC),

and a new method for determining surface energies without an unreliable comparison

of bulk and slab results, to the calculation of the surface energy. Our method

improves on previous calculations in a number of ways and removes many sources

of error that plagued previous calculations.

The final study applies DMC to the properties, specifically the formation

energy, of point defects in Alumina. Alumina is an important technological material,

and there are many important unanswered questions relating to its properties that

stem from the behaviour and concentration of its point defects. We address many

of the problems associated with the calculation of formation energies with electronic

structure calculations, and present the first calculations of formation energies of

charged point defects in DMC.
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Chapter 1

Introduction

In recent decades, computational simulation has come to play an ever increasing role

in advancing our understanding of physical processes. Bridging the gap as it does

between pure theory and experiment, there is a wide spectrum of approaches one

can take depending on the tractability of the problem at hand to analytic solution:

the computational problem left once one has described a physical system as well as

one can analytically might be anywhere from brute-force number crunching of the

simplest underlying rules that describe a highly realistic system, to the realization of

highly-abstracted rules that describe a model system. Often, the choice depends on

the level of approximation one is willing to put up with, and the level of quantitative

accuracy required of the results.

Computational electronic structure is a well-established field with a wide

range of available theories that span almost this entire spectrum: from models

where useful results can be extracted at the pen-and-paper level such as classi-

cal point charges and empirical tight-binding, through pair-potential methods and

fully quantum-mechanical yet approximate theories including Hartree Fock (HF)

and Density Functional Theory (DFT), to quantum chemistry methods capable of

any level of precision one requires, at the cost of very great computational effort.

Sitting very much at the ‘accurate’ end of that range is the set of methods known as

quantum Monte Carlo, which, while not quite able in practice to reach the absolute
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CHAPTER 1. INTRODUCTION

heights of accuracy obtainable with quantum chemistry, turns out to be applicable

to a large range of situations which are entirely out of reach of those techniques. The

principal advantage of quantum Monte Carlo depends on what it is compared to:

measured relative to post-Hartree-Fock quantum chemistry, it is its favourable scal-

ing with system size that renders it feasible in simulating extended systems, whereas

compared to Density Functional Theory, it is the greatly increased accuracy of its

results, the result of its relative absence of arbitrary approximations. In many cases,

most notably any sort of periodically-repeating solid crystal, it is the only technique

capable of combining anything near the level referred to as “chemical” accuracy,

usually thought of as 1 kcal/mol, or 0.043 eV/atom, with feasible computing time,

favourable scaling with system size, and size-consistency∗.

The fundamental means of description of electrons in condensed matter is

their wavefunction. DFT replaces this, in ways we will address in Chapter 2, with

the electron density. DFT is, as will be shown, capable of being exact in principle

for energies, and indeed for other operators as the Hohenberg-Kohn theorems show,

but relies in practice on being able to write down in each case an unknown func-

tional of the density. Many of the most significant breakthroughs in modern physics

have come from an understanding of the characteristics of the wavefunctions of the

elementary excitations of the system: superconductivity and superfluidity, the quan-

tum hall effect and many others. It should not, therefore, come as a surprise that

advances in the treatment of wavefunctions should also be capable of providing us

with a more accurate way of calculating the properties of condensed matter required

of electronic structure calculations.

In spite of the apparently well-founded belief that QMC is capable of provid-

ing answers of greater accuracy and perhaps, in view of its more fundamental level of

description, greater insight, in reality this has not been widely demonstrated. There

exists a need for the QMC community to demonstrate the use of QMC in new cir-

∗By size consistency, we mean that for a periodic system, a sample of twice the size will have
twice the total energy: this is not always exactly the case in QMC, which does suffer finite size
effects, but they are in general quirks of the implementation rather than fundamental failings of
the method.
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CHAPTER 1. INTRODUCTION

cumstances to add weight to argument that it gives accurate results. Additionally,

given the enormously widespread usage of DFT in physics and materials science, it

is of great value to determine under what circumstances existing calculations are

correct and when they are lacking, and to provide benchmark results to aid the

development of improvements to the technical aspects of DFT calculations.

In this thesis, we present three such applications. To set the scene, Chapter 2

begins by introducing the many-body problem and its one-electron simplifications,

and Chapter 3 describes the types of quantum Monte Carlo used in this research

— variational Monte Carlo (VMC) and diffusion Monte Carlo (DMC). The theory

behind both algorithms is discussed, as well as some of the details of their imple-

mentation.

In Chapter 4 we discuss the mathematics behind quantities relating to polar-

ization and localization in many-body systems. We present a new derivation of the

many-body version of the ‘Modern Theory’ of Polarization and Localization which

highlights the connection to the concept of many-body Wannier functions intro-

duced by Souza, Wilkens and Martin [156]. We also present the results of a variety

of calculations of such in model systems in DFT and VMC.

In Chapter 5, we discuss the calculation of the surface energy of the electron

gas, an important system both as a benchmark of other methods, and as a demon-

stration of the accuracy and relative absence of approximation of QMC. Our results

improve greatly on previous attempts to calculate surface energies within QMC by

systematically identifying and minimizing the many sources of error that plague

such calculations.

In Chapter 6 we present DMC calculations of the formation energy of point

defects in Alumina. This is important not only as a proof of concept of DMC in large

systems, but as a tool to address a wide range of uncertainties surrounding calcula-

tion of such quantities in DFT, such as bandgap-correction issues, DFT overbinding,

and many others.

While calculations in QMC remain technically challenging and computation-

ally demanding at present, they are nevertheless vital for providing a test and bench-
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CHAPTER 1. INTRODUCTION

mark of the accuracy of other methods, principally DFT, and for resolving questions

which DFT is unable to treat with sufficient accuracy. With time, increased com-

puting power and the ever increasing maturity of available software codes, QMC

may yet develop into a mainstay of the electronic structure community.
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Chapter 2

Many-Electron Quantum

Mechanics

2.1 The Schrödinger Equation and Many-body

Wavefunctions

The central result of quantum mechanics is that the behaviour of all physical systems

is the result of the properties of the wavefunction Ψ of the particles involved, which

is governed by the Schrödinger equation. The defining element of the Schrödinger

equation is the Hamiltonian Ĥ of the system, which incorporates all of the interac-

tions between elements of the system and all the contributions to its energy. In a

large system with a large number N of interacting particles, this becomes a fiendishly

complex object, with of order N2 or more terms which strongly couple the 3N spa-

tial coordinates {ri} and N spin coordinates {σi}, rendering the equation highly

non-separable. Though they can be treated within the frameworks we are about to

discuss, we will neglect for the purposes of this thesis the effect of magnetic fields

and any direct contribution to the Hamiltonian of the spins of the electrons, as the

only effect of spin in these applications is indirect, via the restrictions on the wave-

function imposed by exchange and antisymmetry. We will also discard relativity

at this point, even though in heavier atoms it can have a significant effect on core
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CHAPTER 2. MANY-ELECTRON QUANTUM MECHANICS

electrons, as it will not be relevant to any of the studies presented here and makes

the results considerably less neat.

The Schrödinger equation for a collection of Ne electrons at positions {ri}
with spins {σi} interacting via the Coulomb interaction with Nn point nuclei of

atomic number {ZI} and masses {MI} at positions {RI} is

ĤΨ({ri, σi}, {RI}, t) = i~
∂Ψ

∂t
, (2.1)

where

Ĥ = − ~
2

2me

Ne∑

i

∂2Ψ

∂r2
i

− ~
2

2

Nn∑

I

1

MI

∂2Ψ

∂R2
I

−
Ne∑

i

Nn∑

I

ZIe
2

4πǫ0|ri −RI |
+

1

2

Nn∑

I

Nn∑

J 6=I

ZIZJe
2

4πǫ0|RI −RJ |

+
1

2

Ne∑

i

Ne∑

j 6=i

e2

4πǫ0|ri − rj|
. (2.2)

We will adopt the standard practice of using the Hartree system of atomic units

throughout this thesis unless otherwise stated. In this system, length, time and

mass are redefined such that ~ = e = me = 4πǫ0 = 1, in order both to simplify the

equations and to render all the terms numerically of order ∼ 1 to aid computational

accuracy. Eq. 2.2 then becomes

Ĥ = −1

2

Ne∑

i

∂2Ψ

∂r2
i

− 1

2

Nn∑

I

1

MI

∂2Ψ

∂R2
I

−
Ne∑

i

Nn∑

I

ZI

|ri −RI |

+
1

2

Nn∑

I

Nn∑

J 6=I

ZIZJ

|RI −RJ |
+

1

2

Ne∑

i

Ne∑

j 6=i

1

|ri − rj|
(2.3)

The first step towards solving this is to make what is known as the Born-

Oppenheimer approximation. On the grounds that the timescale associated with the

motion of whole atomic nuclei is expected to be much longer than that associated
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CHAPTER 2. MANY-ELECTRON QUANTUM MECHANICS

with the movement of individual electrons, when looking for stationary states of the

Hamiltonian of energy E we make the following separation of variables:

Ψ({ri, σi}, {RI}, t) = ψ({ri, σi}; {RI})χ({RI})e−iEt . (2.4)

That is to say, the nuclear coordinates {RI} enter into the electronic wavefunctions ψ

solely as parameters, with respect to which ψ is smoothly varying. The Schrödinger

equation then becomes

(
−1

2

∑

i

∇2
ri

+
1

2

∑

i6=j

1

|ri − rj|
−
∑

i,I

ZI

|ri −RI |

)
ψα = Eα({RI})ψα (2.5)

for the electrons, and

(
−1

2

∑

I

1

MI

∇2
RI

+
1

2

∑

I 6=J

ZIZJ

|RI −RJ |
+ Eα({RI})

)
χαβ = Eαβχαβ (2.6)

for the ions.

It can be seen that Eq. 2.4 is not actually an exact eigenstate of Ĥ by noting

that matrix elements of the form 〈Ψα′β′ |Ĥ|Ψαβ〉 are not simply Eαβδαα′δββ′ but

contain terms including
1

MI

∇2
RI
ψα. However, the large mass ratio me/mp keeps

these terms small enough that this approximation holds very well, especially for

heavier ions. Standard practice at this point is to consider the ions as fixed, classical

point charges, to discard Eq. 2.6 and consider only the electronic problem quantum-

mechanically, with the ion-ion interaction energy added as a constant value EII . We

return to referring to the N -electron wavefunction as Ψ and we are now solving the

marginally more tractable

(
−1

2

∑

i

∇2
ri

+
1

2

∑

i6=j

1

|ri − rj|
−
∑

i,I

ZI

|ri −RI |
+ EII

)
Ψ({ri}) = EΨ({ri}) , (2.7)

and treating the ion coordinates {RI} as fixed parameters.

In the rest of this chapter, we will make a series of approximations to reformu-
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CHAPTER 2. MANY-ELECTRON QUANTUM MECHANICS

late this intractable N -electron problem as a collection of manageable one-electron

problems. In the following chapter, we will discuss how to improve on this by re-

turning to the form above, armed with the knowledge gained from the one-electron

treatment, and trying to tackle it directly.

2.2 Single-Electron Methods

Single-electron, or ‘independent-particle’, approaches to solving Eq. 2.7 rely on map-

ping the many-electron problem onto a series of single-electron problems involving

a Hamiltonian where the explicit electron-electron interactions are replaced by an

effective potential V eff(r):

[
−1

2
∇r

2 + V eff
i (r)

]
ψi(r) = ǫiψi(r) . (2.8)

The effective potential V eff
i may be different for each orbital i, as in Hartree theory,

or it may be a single value for all the orbitals as in Density Functional Theory

(DFT). We will explain briefly how this effective potential is obtained in Hartree

and Hartree-Fock theory before describing DFT in Section 2.3.

The simplest attempt at a solution for Ψ({ri}) would be a product of one-

electron orbitals ψi(r):

Ψ({ri}) =
∏

i

ψi(ri) , (2.9)

whose optimal solution, by the variational principle, will obey

δ

δψ∗i (ri)

(
〈Ψ|Ĥ|Ψ〉 −

∑

j

λj〈ψj |ψj〉
)

= 0 . (2.10)

The Lagrange multipliers λj enforce the normalization of the orbitals. Inserting the

Hamiltonian of Eq. 2.7 gives us

(
−1

2
∇2

r +
∑

j 6=i

∫
dr′
|ψj(r

′)|2
|r− r′| −

∑

I

ZI

|r−RI |

)
ψi(r) = λiψi(r) , (2.11)
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CHAPTER 2. MANY-ELECTRON QUANTUM MECHANICS

which is an effective Schrödinger equation for the single particle orbital ψi in the form

of Eq. 2.8. However, Eq. 2.9 is not an acceptable wavefunction for electrons, as it is

not antisymmetric under exchange of electron coordinates, which the wavefunctions

of Fermions must be.

The antisymmetry comes in the form of a Slater determinant, which is the

result of the application of an antisymmetrization operator Â to the product wave-

function of Eq. 2.9:

ΨHF ({ri, σi}) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(r1, σ1) ψ1(r2, σ2) . . . ψ1(rN , σN )

ψ2(r1, σ1) ψ2(r2, σ2) . . . ψ2(rN , σN )
...

...
. . .

...

ψN(r1, σ1) ψN (r2, σ2) . . . ψN(rN , σN )

∣∣∣∣∣∣∣∣∣∣∣∣

. (2.12)

If we apply the Hamiltonian to this, we get

〈ΨHF |Ĥ|ΨHF 〉 =
∑

i

Hi +
1

2

∑

ij

(Jij −Kij) , (2.13)

where Hi are the single particle contributions

Hi =

∫
d3rψ∗i (r)

(
−1

2
∇2

r +
∑

I

ZI

|r−RI |

)
ψi(r) (2.14)

and the Jij are the Coulomb integrals as in Hartree theory:

Jij =

∫ ∫
d3r′ d3rψi(r)ψ

∗
i (r)

1

|r− r′|ψ
∗
j (r
′)ψj(r

′) . (2.15)

The Kij terms, however, are the exchange terms resulting from the antisymmetry:

Kij =

∫ ∫
d3r′ d3rψi(r)ψ

∗
j (r)

1

|r− r′|ψj(r
′)ψ∗i (r

′) δσiσj
. (2.16)

It is not necessary to exclude i = j terms in Eq. 2.13 because Kii = Jii. The same

procedure as above gives us an effective-potential form to find the orbitals ψi. We
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write (
−1

2
∇2

r + ĵ + k̂ −
∑

I

ZI

|r−RI |

)
ψi(r) = λiψi(r) , (2.17)

where we have defined

ĵψi(r) =
∑

j

ψi(r)

∫
d3r
|ψj(r

′)|2
|r− r′| (2.18)

and

k̂ψi(r) =
∑

j

ψj(r)

∫
d3r

ψ∗j (r
′)ψi(r

′)

|r− r′| δσiσj
. (2.19)

We can now solve Eq. 2.17 for the orbitals ψi(r) to obtain the Hartree-Fock energy

through Eq. 2.13.

In Hartree-Fock, the effect of antisymmetry in keeping electrons apart is

explicit, and can be expressed as the exchange energy in Eq. 2.16, the difference

between the Hartree and Hartree-Fock energies. However, antisymmetry only affects

electrons of like-spin: it does nothing to keep apart electrons of opposite spin, so

the Hartree-Fock energy is always higher than the true ground state. The difference

between the Hartree-Fock energy and the true ground state, the result of further

correlation not included in exchange antisymmetry, is referred to as the correlation

energy, which DFT attempts to approximately include, as well as an approximation

to exchange, by taking a rather different approach to the problem.

2.3 Density Functional Theory

Density functional theory is founded on a pair of theorems by Hohenberg and Kohn

[74], which state that for a given external potential vext(r) acting on a many-electron

system, it is possible to define a functional EHK[n] of the electron density n(r) which

is minimized and equal to the exact ground state energy when n(r) is the ground

state electron density, and that for a given number of interacting particles in an

external potential vext(r), this potential is uniquely determined by the ground state

density n(r). The theory was extended to spin polarized systems by von Barth and
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CHAPTER 2. MANY-ELECTRON QUANTUM MECHANICS

Hedin [173], in terms of a unique functional of the spin density E
[
n↑(r), n↓(r)

]
.

Reviews of density functional theory focusing on different areas can be found by,

among others: Jones and Gunnarsson, 1989 [84]; Dreizler and Gross, 1990 [39]; and

Gross, Runge, and Heinonen, 1991 [67]. In this section we will give an extremely

brief overview of the basic theory, without any details of the implementation of the

method — which in many modern codes [34, 63, 152] does not closely resemble the

route outlined here.

Because they are so central to the theory, and their proofs are so simple,

we will outline a proof of the Hohenberg-Kohn theorems. Proof that n(r) uniquely

determines vext(r) proceeds by contradiction: assume that there are two external po-

tentials v
(1)
ext(r) and v

(2)
ext(r) which differ by more than a constant, producing different

Hamiltonians Ĥ(1) and Ĥ(2), which thus have different ground state wavefunctions

Ψ(1) and Ψ(2). Then, because Ψ(2) is not the ground state of Ĥ(1), the variational

principle demands that

E(1) = 〈Ψ(1)|Ĥ(1)|Ψ(1)〉 < 〈Ψ(2)|Ĥ(1)|Ψ(2)〉 . (2.20)

The assumption of strict inequality is discussed further in [74], and the result can

be generalized to degenerate cases where this cannot be assumed. We write the last

term of Eq. 2.20 as

〈Ψ(2)|Ĥ(1)|Ψ(2)〉 = 〈Ψ(2)|Ĥ(2)|Ψ(2)〉 − 〈Ψ(2)|Ĥ(2) − Ĥ(1)|Ψ(2)〉 . (2.21)

The interactions between particles are identical in both Hamiltonians, so only the

interaction of the density with the external potential differs, giving

E(1) < E(2) +

∫
d3r

[
v

(1)
ext(r)− v(2)

ext(r)
]
n(r) (2.22)

Interchanging the subscripts also gives us

E(2) < E(1) +

∫
d3r

[
v

(2)
ext(r)− v(1)

ext(r)
]
n(r) (2.23)
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Adding the two together gives the evidently contradictory result E(1) + E(2) <

E(1) + E(2), completing the proof. Crucially, this also ensures that the ground

state wavefunction itself, and thus all the properties of the system, are uniquely

determined by n(r).

Proof of the second theorem, that there exists a universal functional for the

energy E[n(r)], proceeds by a similar approach, and a presentation can be found

in, for example Ref. [116]. The original Hohenberg-Kohn proof only applied to

a certain subset of possible densities: those that are the ground state density of

the electron Hamiltonian with some external potential vext(r), also known as “V-

representable”. It was later extended to the more general class of “N-representable”

densities — those that are derivable from any valid N -electron wavefunction ΨN —

by the approach of Levy and Lieb [108, 109, 112] involving a constrained search over

the space of wavefunctions that produce a particular density.

The Hohenberg-Kohn theorem and its extensions are powerful arguments for

the value of a density-based approach, but on their own they provide no recipe

for calculating wavefunctions or other properties of the system from its density.

The key to implementing a functional in practice is a substitution, known as the

Kohn-Sham ansatz [94], which replaces the original many-body problem with an

auxiliary independent-particle problem. The assumption is that the ground state

density of the full interacting system, representing the minimization of the unknown

Hohenberg-Kohn functional, is equal to the ground state density of a system of in-

dependent particles, which is found by minimizing a known functional where the

explicit interactions are replaced by a local effective potential Veff(r). The origi-

nal Hohenberg-Kohn theorem states that a unique functional EHK[n] exists for the

energy of the full interacting system, which can be written as

EHK[n] = T [n] + Eint[n] + Eext[n] ≡ FHK[n] + Eext[n] , (2.24)

where FHK[n] is the sum of the kinetic and interaction energies T [n] and Eint[n] of
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the particles, and

Eext[n] =

∫
dr Vext(r) n(r) (2.25)

is the energy of the external potential (atoms, quantum wells, jellium slabs etc).

The Kohn Sham approach replaces the total energy functional with

EKS[n] = Ts[n] + EH[n] + Exc[n] + Eext[n] (2.26)

where

EH[n] =
1

2

∫
drdr′

n(r)n(r′)

|r− r′| (2.27)

is the Hartree Energy, Ts[n] is the kinetic energy of the noninteracting system, and

Exc[n] is the exchange-correlation energy, which attempts to group together all the

many body effects of exchange and correlation:

Exc[n] = FHK[n]− (Ts[n] + EH[n]) = T [n]− Ts[n] + Eint[n]−EH[n] (2.28)

We can write the density n(r) and the non-interacting kinetic energy Ts[n] in

terms of the N lowest-energy Kohn-Sham orbitals ψi(r) of the auxiliary Hamiltonian

(to be defined shortly) as

n(r) =

N∑

i=1

|ψi(r)|2 (2.29)

and

Ts = −1

2

N∑

i=1

〈ψi|∇2|ψi〉 =
1

2

N∑

i=1

∫
|∇ψi(r)|2dr . (2.30)

The spin labels have been omitted here for clarity, but in spin polarized systems

there will be separate spin up and spin down densities, and spin-dependent orbitals

and eigenvalues.

The ground state of the Kohn-Sham auxiliary system, and thus the ground

state density and energy of the full interacting system, is found by minimizing the

total energy with respect to the orbitals, using the chain rule on the quantities
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expressed as functionals of the density,

δEKS

δψ∗i (r)
=

δTs

δψ∗i (r)
+

[
δEext

δn(r)
+

δEH

n(δr)
+
δExc

δn(r)

]
δn(r)

δψ∗i (r)
= 0 , (2.31)

subject to the constraints

〈ψi|ψj〉 = δi,j . (2.32)

Eqs. 2.29 and 2.30 give

δTs

δψ∗i (r)
= −1

2
∇2ψi(r);

δn(r)

δψ∗i (r)
= ψi(r) . (2.33)

If we use the method of Lagrange Multipliers for the diagonal (i = j) terms of the

constraints, the Euler-Lagrange equation obtained is

(HKS − ǫi)ψi(r) = 0 , (2.34)

where HKS is the effective Kohn-Sham Hamiltonian, given by

HKS = −1

2
∇2 + VKS(r) , (2.35)

and the Kohn-Sham potential is given by

VKS(r) = Vext(r) +
δEH

δn(r)
+
δExc

δn(r)
. (2.36)

The solutions of Eq. 2.34 are found by matrix diagonalization, so they are all mu-

tually orthogonal, ensuring that the off-diagonal constraints are imposed automati-

cally.

An exact exchange-correlation functional Exc[n], with which these equations

would be exact and equivalent to the full Hohenberg-Kohn form, would have to ex-

press all the complications of the many-body correlation at long and short ranges,

and is clearly far too complex an object for there to be any realistic hope of approx-

imating it. Indeed it can be proved that the exact functional is not even analytic,

20



CHAPTER 2. MANY-ELECTRON QUANTUM MECHANICS

due to the required behaviour of the functional as the number of electrons in the

system is varied [130, 149]. Therefore, the most commonly used approach is to ap-

proximate Exc by a local functional of the density, and optionally its gradient. The

most familiar approximations of this type are the Local (Spin) Density Approxima-

tion (L(S)DA) and the Generalized Gradient Approximation (GGA). In the case of

the LDA, the approximate exchange-correlation energy combines the exact exchange

energy density for the homogeneous electron gas and a fit [133] to the correlation

energy density based on diffusion Monte Carlo data for the Homogeneous Electron

Gas (HEG) [31].

Clearly, in general, the eigenfunctions produced by solving Eq. 2.35 do not

necessarily produce the same density as the n(r) used to construct VKS(r) when

Eq. 2.29 is used to recalculate the density. The energies and wavefunctions are

only meaningful once they are self-consistent, that is to say, the output n(r) from

the wavefunctions that solve Eq. 2.35 is the same as that which produced VKS(r).

Therefore, starting from an initial guess (which does not need to be very close to the

solution) a procedure is used which mixes the input and output densities in such a

way as to produce a self-consistent density where nout(r) = nin(r). Sometimes, linear

mixing, where a certain fraction α of the new density is mixed with (1− α) of the

old is sufficient, but in more difficult cases there are a large number of more complex

mixing schemes which exist to ensure convergence, such as the Broyden method [20].

Alternatively, it is possible to directly minimise the interacting energy by using a

scheme such as conjugate gradients directly upon the wavefunction coefficients in

the basis used.

Density Functional Theory and its extensions can be used to produce energies

and electron densities in very good agreement with experiment. The nature of

the independent particle approach used to make the Kohn-Sham method feasible

means that the specific eigenvalues and eigenvectors it produces are not in general

physically meaningful as individual single-particle states, but the requirement that

they produce the correct density means that they make a good starting point for

explicit many-body calculations. In particular, they make good starting points for
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the single particle orbitals in a quantum Monte Carlo calculation, when combined

with a Jastrow factor to include the effects of correlation.

2.4 Pseudopotentials

From consideration of the single-electron orbitals of individual atoms, it is clear that

the lowest-energy eigenstates, those of the ‘core’ electrons surrounding a nucleus are

very tightly bound to that nucleus, and do not extend far from it spatially. Con-

sequently, the potential in which they move is dominated by that from the nucleus

and they are comparatively unaffected by any environment in which the atom might

be placed in a calculation. This is the basis of the pseudopotential approximation

[134], which seeks to replace the strong Coulomb potential of the nucleus and the

tightly bound, rapidly-varying orbitals of the core electrons with an effective ionic

potential which acts on the remaining ‘valence’ electrons [35]. A pseudopotential is

generated for a lone atom in a prior calculation, and is then used in a calculation of a

molecule or solid to represent the nucleus and its core electrons, which are assumed

to be ‘frozen’ in the same orbitals they occupy in the atom. The generation involves

the calculation of the orbitals and the effective potential for the full all-electron

atom within a given single-electron method — generally DFT or Hartree-Fock. The

valence orbitals are then modified to define the pseudowavefunctions ψps. The ad-

vantage of the pseudowavefunctions over the true valence wavefunctions is that they

do not oscillate rapidly inside the core region (which would be necessary if they

had to retain orthogonality with the core wavefunctions) and can thus be described

much more easily with representations which rely on smoothness, such as plane

waves. The Schrödinger equation is then inverted to find the pseudopotential Vps

which would have generated the pseudowavefunctions, under the constraint that the

eigenvalues are the same as those of the original valence states.

A pseudopotential is constructed to match the true potential outside a spec-

ified radius rc, the core radius, and the pseudowavefunctions that go with it match

the true orbitals beyond this distance also. It is also desirable to reproduce the
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Figure 2.1: A Hartree-Fock generated pseudopotential for Al, with Zcore = 3, hence 3
valence electrons. Against the left scale, the red line shows V l=1

ps , the pseudopotential
for the p channel, compared to −3/r

phase shift upon scattering of a plane wave by the core. Because this phase shift is

different for different angular momentum states, pseudopotentials must in general

be non-local operators, to reproduce the scattering properties for all angular mo-

mentum states. The phase shift is always matched at the valence eigenvalue, but

various techniques can be used to ensure this happens over a wider range of energies.

One condition that is often applied is that of norm-conservation, which en-

sures that the charge in the core region (corresponding to the integral
∫

d3rψps(r) up

to r = rc) is the same [68] as for the true wavefunctions. Norm conservation ensures

that the energy derivative of the phase shift is correct at the valence eigenvalue,

so that the real wavefunction and pseudowavefunction phase shifts agree (modulo

2π) over a wider range of energies. The norm-conservation condition is relaxed

in other constructions such as the Vanderbilt ‘ultrasoft’ pseudopotentials [169] to

enable other favourable properties to be enforced.

A nonlocal pseudopotential is often written in a ‘semi-local’ form, where one

of the angular momentum channels is chosen as local and the rest are expressed as
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the difference relative to the local channel:

V̂ps = V̂loc +
∑

lm

(Vl − Vloc)P̂lm (2.37)

where V̂loc is the pseudopotential of the local channel, Vl are the pseudopotentials for

angular momentum channel l, and P̂lm are projectors which project out the different

angular momentum components lm of the electronic wavefunctions. It is sufficient

to express V̂ps in terms of only a small number of angular momentum channels:

usually only l = 0, 1, 2 are used. The choice of which channel to make the local

channel is arbitrary, but is usually the highest l channel, as this saves the number

of projectors that need to be calculated. A further improvement can be made to

reduce the number of integrals required to calculate the projections, by writing the

pseudopotential in Kleinman-Bylander form [90]:

V̂KB = V̂loc +
∑

lm

|δV̂lφlm〉〈φlmδV̂l|
〈φlm|δV̂l|φlm〉

(2.38)

where the |φlm〉’s are eigenstates of the pseudohamiltonian.

The quality of a pseudopotential is determined by its transferability, i.e. how

accurate it remains in a variety of different chemical environments. A good pseu-

dopotential will be able to reproduce properties such as binding energies, geometries

and forces in a variety of different forms, with different types of bonding and differ-

ent structures. The pseudopotentials we use in this work in Chapter 6 have been

thoroughly tested in advance and found to be highly transferable.
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Chapter 3

Quantum Monte Carlo

3.1 Background

Monte Carlo methods encompass a broad spectrum of stochastic techniques for sim-

ulation of physical and mathematical systems, whose only unifying characteristic is

the use of random (or more usually pseudo-random) numbers. The strength of these

methods lies in their ability to sample configuration spaces of systems with large

numbers of coupled degrees of freedom in an efficient manner. In particular, Monte

Carlo integration is a numerical quadrature method for approximate evaluation of

multi-dimensional integrals by sampling random points within the configuration

space and evaluating the integrand at each of these points. After enough samples

have been accumulated, the sample mean asymptotically approaches the expecta-

tion value of the integrand over the whole space. The advantage of this method

in terms of accuracy for a given computational effort becomes more and more pro-

nounced as the dimensionality d of the integral increases: conventional mesh based

methods scale increasingly poorly with system size as d increases. For example,

using the d-dimensional generalization of Simpson’s rule and a cubic mesh of M

points, the error scales as M−2/d, whereas a Monte Carlo sample of M points will

have an error decaying according to the central limit theorem as M−1/2 independent

of d. For d > 4, therefore, Monte Carlo methods begin to win out over traditional
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mesh based quadrature. For other quadrature methods the exponents vary, but no

matter how one divides up one’s configuration space, with increasing dimensionality

Monte Carlo eventually becomes the more efficient technique. It is this fact that

suits it ideally to the integrals in enormous numbers of dimensions that characterize

the expectation values of many-body quantum systems. In this section we briefly

introduce the Monte Carlo technique, focussing on those aspects relevant to QMC.

We denote by a vector R a single position in a many-dimensional configura-

tion space, and by P(R) an associated probability density, which obeys

P(R) ≥ 0 and

∫
dRP(R) = 1 . (3.1)

Many problems in physics amount to evaluating for some probability distribution

estimates of the mean

µf =

∫
dR f(R)P(R) , (3.2)

and variance

σf =

∫
dR [f(R)− µf ]

2P(R) . (3.3)

of some function f(R).

An estimate I of µf may be obtained by evaluating the mean of its value at

a finite number M of points Ri sampled from P(R):

I =
1

M

M∑

i=1

f(Ri) . (3.4)

Here the central limit theorem comes into play, in that not only does this mean tend

to µf as M →∞, but also the error on the estimate will be given by

σI =
σf√
M

, (3.5)

allowing us to obtain an arbitrarily accurate estimate of µf by increasing M until a

desired σI is obtained.
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More generally, this technique can be used to evaluate any integral of the

form

I =

∫

Ω

dR g(R) (3.6)

by splitting g(R) into a ‘score function’ f(R) and an ‘importance function’ P(R),

such that g(R) = f(R)P(R).

Quantum Monte Carlo refers to the application of Monte Carlo methods to

simulation of quantum systems. There are again a wide range of techniques that fall

under this name, but of these two are commonly used in application to finding ground

state properties of extended fermion systems. The first, and simpler, of these is

variational Monte Carlo, which applies the aforementioned Monte Carlo integration

scheme to the evaluation of expectation values of quantum mechanical operators,

primarily the Hamiltonian, on a trial wavefunction. The second, a more involved but

potentially considerably more accurate and useful method, is diffusion Monte Carlo,

which uses a Green function to propagate the Schrödinger equation in imaginary

time so as to project out the ground state component of a starting trial function.

These two methods account for the majority of applications of QMC to solids, but

there are other variations as well. For example, path integral Monte Carlo [29] uses

the path integral formulation of quantum mechanics to simulate systems at non-zero

temperature. Stochastic sampling can also be applied to methods more traditionally

associated with quantum chemistry such as Møller-Plesset theory by sampling the

graphs corresponding to excitations in the space of Slater determinants [160]. In this

chapter we discuss only VMC and DMC, which are the QMC techniques employed

in this work.

3.2 Variational Monte Carlo

Variational Monte Carlo is the simplest means of applying the ideas of Monte Carlo

methods to quantum mechanics. One would like to be able to make an estimate Ō of

the expectation value of a Hermitian operator Ô representing some observable, which
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for a wavefunction ΨT of unknown normalization can be achieved by evaluating an

integral of the form

Ō =

∫
dRΨ∗T (R)ÔΨT (R)∫
dRΨ∗T (R)ΨT (R)

. (3.7)

This can be put in a form easily amenable to the method described above if it can

be written as

Ō =

∫
dR

(
ÔΨT (R)
ΨT (R)

)
|ΨT (R)|2

∫
dR |ΨT (R)|2

. (3.8)

The quantity in parentheses, OL(R) =
(

ÔΨT (R)
ΨT (R)

)
is known as the ‘local’ value of

Ô as it depends only on the wavefunction at the specific point R in configuration

space.

In essence, what this involves is ‘guessing’ a trial solution ΨT (R) to the

Schrödinger equation for the N -electron wavefunction. The normalized probability

density |ΨT (R)|2/
∫

dR |ΨT (R)|2 acts as the importance function, and by using the

local value of OL(R) as the score function and integrating over the 3N -dimensional

configuration space of the electron coordinates R, one can estimate the expectation

value of the operator Ô for this wavefunction. If Ô is the Hamiltonian Ĥ, this gives

a variational upper bound on the ground state energy, which can be improved by

improving the quality of the trial wavefunction.

The fact that the estimate is variational, in that Ē ≥ E0 where E0 is the true

ground state energy, can be seen by expanding in the basis of energy eigenstates for

which ĤΨi = EiΨi (we neglect normalization as ΨT was not itself assumed to be

normalized) as

ΨT = Ψ0 +
∑

i>0

αiΨi . (3.9)

Inserting this into Eq. 3.7 for Ô = Ĥ gives an energy of

ET = E0 +

∑
i>0 |αi|2(Ei − E0)∑

i>0 |αi|2 + 1
, (3.10)

so the error in the energy estimate ∆E = ET −E0 is always positive and is of order

α2
i . Linear reduction of the error in the wavefunction will therefore give quadratic
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reduction of the error in the energy. A similar argument can be applied to ΨT close

to one of the other eigenstates Ej , but in that case there is no assurance the energy

found will be an upper bound on the true eigenvalue, as some values of Ei−Ej will

be negative.

The strict variational theorem applies as long as certain criteria are met for

the trial wavefunction. Firstly, ΨT must obey the right symmetry properties and

boundary conditions (antisymmetry under exchange of electron coordinates, and the

right periodicity or decay to infinity). Secondly, ĤΨT must be defined everywhere,

so ΨT and ∇ΨT must be continuous everywhere the potential is finite. Finally, to

enable the Monte Carlo method to work, the integrals
∫

dRΨ2
T ,
∫

dRΨ2
T ĤΨT , and

∫
dR (ĤΨT )2, must all exist (the latter because otherwise the statistical error on

the energy will be infinite).

To actually apply this method in practice, one needs: (a) a means of sampling

a series of configurations R from a probability distribution given by |Ψ(R)|2, (b)

methods to efficiently evaluate the local value of the Hamiltonian or other operator,

and (c) a method of generating and systematically improving upon a trial guess of

the ground-state wavefunction Ψ(R). The following subsections will examine how

each of these are achieved.

3.2.1 The Metropolis Algorithm

The Metropolis Algorithm [120] lies at the heart of practical implementations of

Monte Carlo methods: it allows highly efficient sampling of configurations from

an arbitrary probability distribution by evolving the position of a walker (or many

walkers) exploring the configuration space by taking a series of small steps, which

are accepted or rejected according to the following rules:

1. Initialize the position R at random in the system.

2. Make a trial move to a new position R′ chosen from some probability density

function T (R′ ← R).
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3. Generate a uniform deviate ν from the interval [0, 1] and compare it to the

probability A(R′ ← R) = Min
(
1, T (R′←R)P (R′)

T (R←R′)P (R)

)
where P (R) is the probabil-

ity density we are trying to sample. If ν ≤ A, add the new position of the

configuration R′ to the walk comprising the series of recorded configurations.

Otherwise, the configuration remains at R and another point on the walk is

added here.

4. Return to step (2) and continue until sufficient points have been accumulated.

The only restriction on the probability distribution T (R′ ←R) is that if T (R′ ←R)

is nonzero then T (R←R′) must also be. The details of the choice, however, affect the

efficiency of the algorithm by determining the number of steps over which successive

configurations are serially correlated. If a typical R − R′ is large, the moves will

be rejected too often and R will stay the same for many consecutive moves. If

it is too small, f(R′) will barely differ from f(R). To maximize the efficiency

one must balance one form of serial correlation against the other. In practice, one

frequently chooses moves from a Gaussian distribution with a spread optimized such

that around 50% of moves are accepted.

A detailed derivation of the working of this algorithm can be found in Feller

[48], but some insight as to its operation can be seen by assuming that a very large

population of walkers has reached an equilibrium distribution n(R) which is constant

in time and obeys detailed balance. This latter condition states that the number of

walkers moving per step from some particular phase-space volume element dR to

any other dR′ is the same as the number moving from dR′ to dR. The probability

of a walker moving from dR to dR′ is the probability T (R′ ← R)dR′ of choosing

dR′ to move to, multiplied by the probability A(R′ ← R) of accepting such a move,

so the rate of walkers doing so is

n(R)dRA(R′← R)T (R′← R)dR′ (3.11)
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and the rate of walkers from dR′ to dR is

n(R′)dR′A(R← R′)T (R← R′)dR . (3.12)

Detailed balance ensures these are equal, giving

n(R)

n(R′)
=
A(R← R′)T (R← R′)

A(R′ ← R)T (R′ ← R)
, (3.13)

and from the definition of A in step 3 we know that

A(R← R′)

A(R′ ← R)
=
T (R′ ← R)P (R)

T (R← R′)P (R′)
, (3.14)

so the equilibrium density obeys:

n(R)

n(R′)
=
P (R)

P (R′)
. (3.15)

We have therefore shown that, after a sufficient equilibration period, the

Metropolis algorithm is capable of delivering a distribution of walkers such that

n(R) is proportional to P (R). Repeated use of the algorithm generates a chain of

configurations R, distributed as required but somewhat serially-correlated, in that

R and R′ are not independent because R has not moved very far in one step.

In practice, rather than choosing moves in which the whole vector R changes,

it is more efficient to move electrons one-by-one. There are several benefits to this

algorithm, such as the fact that the contribution to the averages of trial moves

that were rejected can be included in the summations, and that an efficient two-

level version of the algorithm [36] can be implemented which avoids computation of

unnecessary quantities and considerably speeds up the calculation.

3.2.2 Trial Wavefunctions

We now consider how to construct a trial wavefunction and systematically improve

upon it for a given system. Recent ideas suggest that analysis of the full unknown
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many-body wavefunction may allow one to predict a pattern to the hierarchy of

importance of various possible terms in the mathematical form of the wavefunction

as the level of approximation is increased [75]. This hierarchy begins with a set of

independent one- or two-electron states and gradually includes higher and higher

levels of correlation. Current calculations use only the first two or three levels of

this hierarchy, which in their simplest forms represent a Slater determinant, com-

bined with one-, two- and three-electron Jastrow factors (see Section 3.2.3) and the

introduction of backflow (Section 3.2.4). In this and the following sections we will

examine these forms.

In general (some recent calculations are moving beyond this) trial wavefunc-

tions are built on a Slater determinant of single particle orbitals. This can be justi-

fied on the same grounds used to justify one electron-theories such as Hartree-Fock

— namely that the dominant factor in the exchange-correlation energy is exchange

rather than correlation. A Slater determinant, as previously introduced in Section

2.2, is the simplest means of including a form of wavefunction that is necessarily

antisymmetric in all the electron coordinates and is thus capable of including the

exchange energy correctly:

D(X) = Â
∏

i

ψi(ri, σi) =

∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(r1, σ1) ψ1(r2, σ2) . . . ψ1(rN , σN )

ψ2(r1, σ1) ψ2(r2, σ2) . . . ψ2(rN , σN )
...

...
. . .

...

ψN (r1, σ1) ψN(r2, σ2) . . . ψN(rN , σN )

∣∣∣∣∣∣∣∣∣∣∣∣

(3.16)

For practical reasons, it is usually efficient to replace this full determinant by the

product of spin-up and spin-down determinants

D(X) → D↑(r1, . . . , rN↑
)D↓(rN↑+1, . . . , rN) (3.17)

The orbitals in these two determinants are normally identical in a closed-shell cal-

culation, but they may differ if the system is spin-polarized. Even if the orbitals

are the same, this function is not strictly antisymmetric under exchange of electrons
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with opposite spins, but it can be shown that it gives the same expectation value as

the full determinant for any spin-independent operator (see for example [54]).

The source of these orbitals will depend on the kind of lower-level calculation

feasible and accurate for the system. In the case of single atoms, Hartree-Fock

orbitals are generally preferred [65], for reasons to do with the accuracy of the nodal

surface (see Section 3.3.4). In solids, where Hartree-Fock is not as accurate and is

considerably more demanding, the Kohn-Sham orbitals of density functional theory

are frequently used. Generally, even in cases where the treatment of exchange and

correlation included in these methods is inadequate to capture some aspect of the

relevant physics, they are an accurate enough starting point that the addition of

correlation in ways we will describe shortly, via Jastrow factors and backflow, is

sufficient to produce a wavefunction of high accuracy.

Several alternative starting points have been proposed recently for particular

systems. Pairing wavefunctions, which introduce explicitly the kind of pairing of

same-spin and opposite spin electrons that is required to adequately describe, for

example, the Bardeen-Cooper-Schrieffer (BCS) wavefunction of a superconductor,

can be used in place of the single-particle orbitals of the Slater determinant [26].

Pfaffians, a mathematical construction likened to a generalization of the idea of

determinants, can be used in combination with pairing functions to generate even

more accurate wavefunctions [10]. The ‘Resonating Valence Bond’ wavefunction [25]

obtained by applying a Jastrow correlation term to an ‘Antisymmetrized Geminal

Power’ [13] wavefunction, based upon singlet pairs of electrons, is particularly suited

for describing the electronic structure of molecules. These forms will not be detailed

here as they are not used in this work but it is important to note that the Slater

determinant is not the only possible starting point.

3.2.3 Jastrow Factors

The Jastrow Factor eJ(R) is an attempt to include the effect of short-ranged correla-

tion by selectively reducing the amplitude of the wavefunction when pairs or larger
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groupings of electrons or other particles are close to each other, while not having any

effect when they are far apart. An ideal Jastrow factor would in principle include

the effects of general N -body correlations, but in practice it is common to discard

higher than 3-body terms, and often only 2-body terms are included. The general

form of a 2-electron Jastrow factor is:

J(R) = −1

2

∑

i

∑

j 6=i

uσiσj
(ri, rj) +

∑

i

χ(ri) . (3.18)

The two-body u-terms are usually simple functions of the electron-electron distances

rij: one function u↑↑(rij) = u↓↓(rij) for two same-spin electrons and another function

u↑↓(rij) = u↓↑(rij) for two different-spin electrons.

Some of the properties of these functions can be obtained by considering the

dominant terms in the Hamiltonian as two electrons approach each other, i.e. as

rij → 0. Because the wavefunction must remain an eigenstate, the divergence in the

Coulomb energy must be exactly cancelled by an equal and opposite divergence in

the kinetic energy, which a single Slater determinant cannot provide. This approach

gives rise to so-called ‘cusp conditions’ [86] which constrain the dependence of the

many-electron wavefunction on the interparticle distance rij in the limit rij → 0.

For the approach of two same-spin electrons, it can be shown [86] that

∂u↑↓(rij)

∂rij

∣∣∣∣
rij=0

=
1

2
, (3.19)

and for different-spins that

∂u↑↑(rij)

∂rij

∣∣∣∣
rij=0

=
1

4
. (3.20)

In homogeneous systems, much can be determined about the required form of the

Jastrow factor by analytical arguments. In an inhomogeneous system, however, it

is more common to try to come up with a very general parametrized form obeying

these cusp conditions and extending only to a certain cutoff radius, and then try

to fit the best parameters by variance minimization, which is described in Section
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3.2.6.

On their own, the u terms would tend to reduce the amplitude of the wave-

function in regions of high electron density, because there is a greater chance of

multiple electrons being close to each other there. The effect of the one-body χ

term is to counteract this and keep the density roughly what it was before. This is

important because the single-particle orbitals are generally calculated within a self-

consistent calculation like DFT or HF, and these schemes both yield rather accurate

electron densities in most cases. The χ terms extend throughout the system but

have peaks at positions where the electron density is high: in an atom, molecule or

crystal this is near the nuclei; in a quantum dot, it will be at the dot centre. The χ

function is often represented as a sum of radial functions which depend only on the

distances riI from electron i to nucleus I.

A further complication caused by Jastrow factors relates to spin: a suitably

chosen combination of Slater determinants of orbitals of particular spins ŝz can be

made to be an eigenfunction of the total spin operator Ŝ2, which is a quantity ex-

pected to be a good quantum number in most of the systems under study. However,

inclusion of a Jastrow factor of the type shown above can easily be shown to intro-

duce a certain amount of ‘spin-contamination’ such that the resulting Slater-Jastrow

trial wavefunction is not an eigenfunction of Ŝ2. Fortunately, it has been shown [77]

that the effect of this contamination is negligible in most cases and can safely be

ignored.

3.2.4 Backflow

In Section 3.3.4 we will introduce the importance of the accuracy of the nodal

surface in the determination of energies in DMC. Because a Jastrow factor J(R) is

always chosen to be real, eJ(R) is nowhere negative, so it does not move the nodes

of a wavefunction. As will be shown below, it therefore has no direct effect on the

DMC energy except to lower its variance. One of the ways the nodal surface of the

wavefunction can be improved is to introduce a different type of correlation known
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as backflow correlation. This was first introduced in the context of wavefunctions

for liquid 4He [49] and 3He [50], and later applied to the Homogeneous Electron Gas

(HEG) [100, 101], and most recently to atomic, molecular and even solid systems

[113, 40, 19].

Conceptually, the idea behind backflow is to alter not the single-particle

orbitals themselves but the coordinates R = (r1, r2, ..., rN) that go into them. The

coordinate ri is replaced by a new variable that depends both on ri and on the

positions of the other electrons and nuclei close to ri, allowing the electrons, in

effect, to flow round each other so as to increase their average separation. Because

this has a great deal in common with the classical fluid dynamical description of

the fluid flow around an obstacle, it inherits much of its terminology from classical

fluid dynamics. In practice, the introduction of backflow is capable not only of

reducing the variance of both VMC and DMC, so lowering the error bars for a given

run time, but also of retrieving a much larger fraction of the correlation energy in

both methods, getting closer to the ground state. Backflow is also a very compact

parameterization compared to other methods of improving the nodes such as large

expansions in Slater determinant space, which makes it easier to optimize backflow

wavefunctions. A comparison of QMC simulations with and without backflow is

found in [113].

3.2.5 Operator Estimators in VMC

From the configurations produced by application of the Metropolis algorithm, one

may wish to evaluate averages of a variety of operators. These may include the

total energy, one of its components, other quantities such as Fourier components

of the density, or as will be discussed later, operators relating to polarization and

localization. Clearly, unless the wavefunction is an exact eigenstate of the operator

being sampled, the recorded values will be subject to some statistical fluctuation.

Without some idea of the bounds on the error, the mean itself is rather useless, but

as the values will also be serially correlated it is not trivial to extract a meaningful
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error bar. One systematic way to identify and remove the effect of serial correlation

is called reblocking [53].

Evaluation of the local value OL(Ri) of operator Ô at a series of M configu-

rations Ri gives a series of values Oi. Clearly the mean is

Ō =
1

M

M∑

i=1

Oi , (3.21)

and the sample variance is

s2
M−1 =

1

M − 1

M∑

i=1

(Oi − Ō)2 . (3.22)

If every sample was independent, this would be able to give a good estimate of the

true error bounds ∆O on the mean, which would simply be the standard deviation

of the estimator of the mean, sN−1/
√
N . However, the aforementioned correlation

means this is an underestimate of the true uncertainty.

Reblocking works by grouping the data points Oi into blocks of length L by

taking the means Ōj of the jth set of L points:

Ōj =

jL∑

i=(j−1)L+1

Oi . (3.23)

The idea is that once L is comparable to the correlation time (in steps), then Ōj

will be uncorrelated with Ōj+1, and while the mean of all the values of Ōj will be

the same as Ō, the variance will become

s2
M ′−1 =

1

M ′ − 1

M ′∑

j=1

(Ōj − Ō)2 , (3.24)

with M ′ = M/L. This can be used to get a much more accurate estimate of the true

statistical uncertainty of the sample mean, ∆O =
√
s2

M ′−1/M
′. With some trivial

modifications, these formulae can be redefined to apply even where L is not an exact
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divisor of M . In practice, one must examine the trend of s2
M ′−1/M

′ as a function of

L to find the point where it levels out to a plateau: beyond this, L is greater than

the correlation time and s2
M ′−1/M

′ has converged and represents the true variance.

An alternative approach [81] involves trying to directly estimate the number

of VMC steps in the correlation time, Nc, and simply multiplying up the raw error by
√
Nc — this can be used for an automated estimate provided the error is relatively

well-behaved.

The operator that is most commonly evaluated in QMC is, of course, the

Hamiltonian, to give the total energy: this can be a costly and time-consuming

process so it is worthy of special consideration here. There is an obvious split

between kinetic energy and potential energy, and further between local and nonlocal

parts of the potential. We thus write the local energy EL(R) as

EL(R) =
ĤΨ(R)

Ψ(R)
=
T̂Ψ(R)

Ψ(R)
+
V̂nlΨ(R)

Ψ(R)
+ Vloc(R) . (3.25)

The kinetic energy can be decomposed into the contribution of each electron:

T̂Ψ(R)

Ψ(R)
=
∑

i

Ki(R) =
∑

i

Ψ−1(R)(−1

2
∇2

i )Ψ(R) , (3.26)

which, for all useful choices of Slater determinant and Jastrow factor, can be eval-

uated analytically. There are several possible estimators for the kinetic energy,

differing by integrations by parts (see [125]). They can be compared to each other

to give a test that the calculation is working sensibly.

The electron-electron part of the potential energy can be evaluated either

directly from the Coulomb interaction in finite systems, or via the Ewald [46] or

Modified Periodic Coulomb (MPC) [177] interactions in periodic systems. The local

part of the pseudopotential is also easily evaluated.

If our Hamiltonian contains nonlocal pseudopotentials, as is vital for simula-

tion of realistic systems of anything other that first-row atoms, the Hamiltonian Ĥ
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contains a sum over the electrons i:

Vnl =
∑

i

Ψ−1V̂nl,iΨ , (3.27)

each of which require the evaluation of an integral. For a single atom at the origin,

these integrals can be evaluated as a sum over the nonlocal channels l [47]

Vnl,i =
∑

l

V ps
nl,l(ri)

2l + 1

4π

∫
d3ri Pl[cos(θ

′
i)]

Ψ(r1, . . . , r
′
i, ri+1, . . . , rN)

Ψ(r1, . . . , ri, ri+1, . . . , rN)
, (3.28)

where Pl is a Legendre polynomial. This integral is calculated numerically for

l = 0, 1, 2 using a quadrature rule that integrates products of spherical harmon-

ics, rotating the grid randomly for each integration to avoid systematic bias. The

accuracy of this integration is controlled by a parameter lmax which controls the

maximum spherical harmonic included. The treatment of nonlocal pseudopotentials

thus represents a very costly part of the calculation. Moreover, although the inte-

grals can be evaluated arbitrarily accurately in VMC there are further complications

in DMC (see Section 3.3.6).

3.2.6 Wavefunction Optimization

Many of the ingredients used in the representation of the wavefunction contain

variational parameters that need to be optimized to make the trial wavefunction

ΨT as close as possible to the true ground state Ψ0. In VMC, the accuracy of the

wavefunction is the primary determining factor of the accuracy of the calculation,

as the calculated energy is simply the expectation value of the Hamiltonian with

this wavefunction. In DMC, the wavefunction plays a lesser but nevertheless vital

role as a guide function and defines the nodal surface, as will be explained in the

next section. Additionally, the DMC evaluation of quantities that do not commute

with the Hamiltonian require use of both the DMC and VMC expectation values to

calculate the “mixed” expectation value (see Section 3.3.5) and this relies heavily

on the accuracy of the trial wavefunction. Consequently, no matter how one intends
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to do the calculation, there will be variational parameters that must be optimized.

In many simple systems such as the homogeneous electron gas, good values of the

parameters can often be obtained by comparison with analytical approaches such as

calculations with the Random Phase Approximation — which, for example, can give

the long-range behaviour of the two-body Jastrow factor. In more realistic systems,

however, the parameters must be optimized as a preliminary step of the calculation

itself.

Two principal methods exist for optimization of the wavefunction. Energy

minimization [126, 161, 168] is perhaps the more intuitive route, involving minimiza-

tion of the expectation of the energy with respect to the variational parameters, but

in practice, despite recent advances in energy minimization, the older technique of

variance minimization [166, 88] remains more common. Both methods rely on defi-

nition of a cost function and a minimization scheme, for which there are a wide range

of choices. In this subsection we shall outline only the principles of the methods,

not the details of their implementation.

Variance minimization relies on the fact that, for any eigenstate of the Hamil-

tonian, the variance of the local energy is zero, since ĤΨ(R) = EΨ(R) everywhere.

When the wavefunction is very close to the ground state, the dependence of both the

energy and the variance on the accuracy of the wavefunction is at best quadratic,

as both are almost minimized. Usually, however, the variance has a much stronger

dependence on the quality of the trial wavefunction and is thus an easier quantity

to minimize accurately. In terms of the local energy EL(R), the total energy for a

real wavefunction Ψ(R) parametrized by a set of parameters {α} could be written

as

E =

∫
dRΨ(R)2EL(R)∫

dRΨ(R)2
, (3.29)

and the variance of this energy over the configuration space spanned by R is

σ2 =

∫
dRΨ(R)2(EL(R)−E)2

∫
dRΨ(R)2

. (3.30)

The standard variance minimization procedure generates a set of electron configu-
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rations {R} distributed according to the wavefunction |Ψ{α0}(R)|2 corresponding to

some initial set of parameters α0, and then uses nonlinear minimization algorithms

to iteratively find the parameters {α} that minimize the variance. One usually

sticks with a fixed set of configurations until the minimization process has reached

a tolerable level of convergence. During this, the algorithm is referred to as either

reweighted or unreweighted depending on whether the weights of the configurations

are allowed to vary during the minimization procedure according to the change in

wavefunction with the parameters, or whether they are kept constant. Once the

procedure is completed, a new set of configurations is generated for the new wave-

function, and the process repeats until the wavefunction is as optimized as it can be

for this parameterization.

There is also an alternative procedure that uses the fact that many of the pa-

rameters to be optimized appear as linear parameters in the Jastrow exponent, and

at most quartic parameters in the variance. This allows direct analytic minimization

techniques to be used [41].

Energy minimization in the presence of significant error bars on total energies

and their derivatives with respect to the wavefunction parameters is very challenging,

and a large number of tricks for dealing with such issues must be deployed for the

method to succeed. As energy minimization is not used in this work, we will not

discuss these tricks here, but the outline of a successful scheme can be found in

[168].

3.3 Diffusion Monte Carlo

Diffusion Monte Carlo has a considerably more lofty goal than does variational

Monte Carlo: for a given Hamiltonian, it can, in principle, project out the ground

state in such a way as to give exact ground state energies for quantum systems. In

this section, we show how the algorithm achieves this, concentrating more on the

theoretical underpinnings than the technical details of the implementation, which

are well explained in [125]. The specific techniques described here are not unique
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but represent the way the work of this thesis was carried out. For a wider discussion

of DMC methods, presenting a range of alternative methodologies, see [54].

3.3.1 Imaginary Time Propagation

We begin from the Schrödinger equation, Eq. 2.1, and introduce the new variable

τ = it to obtain

− ∂

∂τ
Φ(R, τ) = (Ĥ −ET )Φ(R, τ) , (3.31)

which is known as the imaginary-time Schrödinger equation. We have also included

an arbitrary energy offset ET for reasons which will become clear shortly. We can

demonstrate the effect of evolving imaginary time τ , by writing Φ(R, t) in terms of

the complete set of eigenvalues {Ei} and eigenvectors φi of the Hamiltonian, which

are of course stationary states whose time dependence is simply e−i(Ei−ET )t:

Φ(R, t) =
∑

i

aiφi(R)e−i(Ei−ET )t . (3.32)

If τ = it this becomes

Φ(R, τ) =
∑

i

aiφi(R)e−(Ei−ET )τ , (3.33)

so in the limit of τ →∞, and setting ET = E0 the ground state is projected out:

lim
τ→∞

Φ(R, τ) = a0φ0(R) . (3.34)

This tells us that if we can simulate the imaginary time evolution of a wave-

function Φ, we can project out its ground state component φ0 and thus evaluate

the ground state energy E0. The way to achieve this evolution is to express it in

terms of the Green function for the Imaginary time Schrödinger equation (ITSE).
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We begin by recasting Eq. 3.31 as an integral equation:

Φ(R; t+ τ) =

∫
G(R′,R; τ)Φ(R′; t)dR′ , (3.35)

where G(R′,R; τ) is a Green function which is the solution to

− ∂

∂τ
G(R′,R; t) = (Ĥ − ET )G(R′,R; t) (3.36)

with the initial condition

G(R′,R; 0) = δ(R′ −R) . (3.37)

It can easily be seen that

G(R′,R; τ) = 〈R′| exp[−τ(Ĥ −ET )]|R〉 . (3.38)

Therefore, for any arbitrary wavefunction Ψ, we can apply the operator exp[−τ(Ĥ−
ET )] to propagate imaginary time. If we now expand in the basis of energy eigen-

functions, by inserting
∑

i |φi〉〈φi| into Eq. 3.38, we can show as above that this

projects out the ground state:

lim
τ→∞

exp[−τ(Ĥ − ET )]Ψ(R) = lim
τ→∞

∫
G(R′,R; τ)Ψ(R′)dR′

= lim
τ→∞

∫ ∑

i

e−τ(Ei−ET )φ∗i (R
′)φi(R)Ψ(R′)dR′

= lim
τ→∞

e−τ(E0−ET )〈φ0|Ψ〉φ0(R) .

We have thus turned the problem of finding the ground state into one of finding

the Green function G, assuming we have some way of representing the wavefunction

Ψ(R) in such a way that we can apply G to it.
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3.3.2 Walkers and Diffusion

The solution to the problem of representing the wavefunction becomes apparent if

we consider the simplest possible Hamiltonian: that of N non-interacting particles

with no potential energy. The Hamiltonian Ĥ is then simply the sum of the kinetic

energy operators and the ITSE is

− ∂

∂t
Φ(R, t) = −1

2

N∑

i=1

∇2
i Φ(R, t) . (3.39)

We see at once that this is equivalent to the well known diffusion equation in a 3N

dimensional space, for which the Green function is a Gaussian peak spreading with

time:

G(R,R′; τ) = (2πτ)−3N/2 exp

[−(R−R′)2

2τ

]
. (3.40)

In the classical diffusion of liquids or gases, the diffusing substance (be it

liquid, gas, solid, heat or otherwise) can be equally well viewed either as a density

field or as a large collection of individual particles. This latter way is significant

here as it suggests a means of representing our wavefunction Φ as a population of

“particles” each undergoing stochastic diffusion. Note that each of these particles,

referred to as walkers and represented by a 3N -dimensional position vector Rk, rep-

resents an entire configuration of all the N electrons in the system, not just a single

electron. Their diffusion is through the 3N -dimensional configuration space, and

one move may represent anything from a single electron moving in one dimension,

to the whole set of N electrons moving at once.

These walkers are evolved in time using the Green function as a transition

probability density. The application of the Green function describes this propagation

as follows: a wavefunction Φ(R, t) is sampled by a set of M walkers at configuration-

space positions Rk :

Φ(R, t)→
M∑

k=1

δ(R−Rk) , (3.41)

where we use the symbol “→” to represent the correspondence between a collection
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of walker positions and a wavefunction. After time ∆τ , this becomes

Φ(R, t+ ∆τ)→
M∑

k=1

G(R,Rk; ∆τ) . (3.42)

By comparison with Eq. 3.40, each of these can be seen to describe a set of N

Gaussians of variance 3Nτ . From these Gaussians, we re-sample a new set of discrete

points Rk. G is independent of the initial time t, depending only on the size of the

timestep ∆τ , so we can iterate the same procedure repeatedly. After a sufficient

number of iterations, the τ →∞ limit will have been reached and the positions Rk

sample the ground state in a statistical sense.

Unfortunately, a Hamiltonian containing only kinetic energy terms is of min-

imal use. To obtain a more useful Green function we must include a potential U(R)

which is a general function of all the particle coordinates, including interactions be-

tween the particles and interactions with an external potential. As there is no longer

a simple expression for the Green function for general U(R), an approximation to

exp[−∆τ(T̂ + Û −ET )] for small timestep ∆τ is the only way to proceed. We make

use of the Trotter formula for exponentials of sums of operators:

e−∆τ(T̂+Û) ≃ e−∆τÛ/2e−∆τT̂ e−∆τÛ/2 , (3.43)

and the Green function becomes, to order (∆τ)3,

G(R,R′; ∆τ) = C exp

[−(R−R′)2

2∆τ

]
exp [−∆τ(U(R) + U(R′)− 2ET )/2] , (3.44)

where C is a constant.

The trick that allows us to continue using “diffusing” walkers is to treat

the new potential term as a reweighting of the Green function. As each walker

now moves around the configuration space, it gains or loses weight wk according to

whether it is in a region of low or high potential energy, respectively: spending time

∆τ at position R causes the walker’s weight to be multiplied by exp[−∆τU(R)].
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The wavefunction Ψ is now no longer represented by the distribution of walkers

alone, but by the distribution of total walker weight. The algorithm just described

is not, however, stable in a real calculation: the ensemble of walkers rapidly ends up

dominated by the single walker that has spent the longest time in favourable regions

where EL < ET , and picked up an exponentially large weight in the process. This

is clearly a desperately inefficient way to proceed.

The further ingredient that makes this approach feasible is to use a branching

algorithm to incorporate proliferation and decay of the walkers as they explore the

configuration space. The reweighting factor P , where

P = exp [−∆τ(U(R) + U(R′)− 2ET )/2] (3.45)

is reinterpreted as specifying the mean number of (unreweighted) offspring of the

current walker at the next time step:

i) If P < 1 the walker continues with probability P , otherwise it is removed.

ii) If P > 1 the walker continues and spawns, on average, P − 1 copies of

itself at the same position in configuration space.

The following formula for the number of walkers Mnew present after the end

of a timestep incorporates both of these possibilities:

Mnew = INT(P + η) , (3.46)

where η is a random number from a uniform distribution between 0 and 1. In this

scheme, ET plays a more significant role, as it is used to keep the population stable.

By dynamically adjusting ET the mean number of walkers is kept approximately

constant around some predetermined value. If ET was not adjusted, walkers either

die out or proliferate catastrophically in regions of low potential energy until the

available computational memory is exceeded.
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One algorithm that can be used to adjust ET is expressed in the formula

ET (τ) = Ebest(τ)−
1

gτ
ln
M(τ)

M0

(3.47)

where Ebest(τ) is the current best estimate of the ground-state energy, gτ is some

multiple of the timestep, and M(τ) and M0 are the current and target total weights

or total populations.

Given that the walkers will spend equal amounts of time in regions where

the energy is above and below the mean, ET likewise spends equal time above and

below E0; it can thus be shown that the average value over a sufficiently long run

will be equal to the ground state energy E0. This ‘growth estimator’ can be used

as a way of extracting the energy, but the so called mixed estimator that will be

described in the next section turns out to be numerically better behaved.

3.3.3 Importance Sampling

As it stands, this algorithm is already capable in principle of evaluating the ground

state energy for a given Hamiltonian. However, a little thought as to the behaviour

of real wavefunctions shows that it very rapidly becomes impossibly inefficient as

the number of electrons increases. The dimensionality of the configuration space to

be explored is 3N and although the space of favourable configurations grows quickly

with N , the space of unfavourable configurations grows vastly much faster. Left

undirected, then, the diffusion will cause the walkers to wander off to regions where

the amplitude of the wavefunction Φ(R) is very low, which contribute negligibly to

the integral for the energy. We would like, therefore, to be able to guide the diffusion

process towards areas of high amplitude of the wavefunction — effectively turning

it into a drift-diffusion process. However, we do not know beforehand where these

areas will be for the unknown ground state Φ0.

We can overcome this by introducing a trial wavefunction ΨT to bias the

process towards areas of high amplitude, at the cost of no longer sampling config-

urations from the true ground state wavefunction Φ0. We first note the following
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identity:

1

2
∇2(ΨΦ) =

1

2
Ψ∇2Φ +

1

2
Φ∇2Ψ +∇Φ.∇Ψ

=
1

2
Ψ∇2Φ− 1

2
Φ∇2Ψ +∇.(Φ∇Ψ)

⇒ 1

2
Ψ∇2Φ =

1

2
∇2(ΨΦ) +

1

2
ΦΨ
∇2Ψ

Ψ
−∇.

(
ΦΨ
∇Ψ

Ψ

)

which allows us to re-write the ITSE (Eq. 3.31) multiplied by a trial function ΨT

ΨT
∂Φ

∂t
= −ΨT (−1

2
∇2Φ + U(R)Φ−ET Φ) (3.48)

in terms of a new variable f(R), where f(R) = ΨT (R)Φ(R),

∂f

∂τ
=

1

2
∇2f −∇.(f∇ ln |ΨT |) +

1

2
f
∇2Ψ

Ψ
− fU(R) + ETf

=
1

2
∇2f −∇.(vf) + (ET − EL)f , (3.49)

where v is the drift velocity, defined by

v =
1

2
∇ ln(|ΨT (R)|2) , (3.50)

and EL(R) = ĤΨT (R)/ΨT (R) is the local energy of the trial function at R.

Eq. 3.49 corresponds to a new integral equation with a modified Green func-

tion:

f(R′, t+ τ) =

∫
G∗(R,R′; τ)f(R, t)dR , (3.51)

where G∗(R,R′; τ) = ΨT (R)G(R,R′; τ)/ΨT (R′). Once again, we make a short

timestep approximation to obtain, after considerable algebra,

G∗(R,R′; ∆τ) ≃ (2π∆τ)−3N/2 exp

[
− [R−R′ −∆τ∇ ln |ΨT |2]2

2∆τ

]
× (3.52)

exp[−∆τ(EL(R′) + EL(R)− 2ET )/2] .

There are several important differences to note about applying this equa-
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tion to the construction of a DMC algorithm. Firstly, we are no longer simulating

merely diffusion with varyingly weighted walkers: the process is now more akin to a

drift-diffusion process, with v(R) as a drift velocity. The particles no longer diffuse

around the configuration space at random but are guided by this drift velocity into

regions of large ΨT . Secondly, without importance sampling we were treating Φ0 as

our distribution. Now, it is not |Φ0|2 but f = ΨTΦ0 according to which the config-

urations are distributed in the limit of large τ . This has a number of implications

for estimation of operators, but, significantly, not for those that commute with the

Hamiltonian. For the total energy, for example, the true ground state energy can

still be sampled by evaluating EL(R):

E0 =

〈
ΨT |Ĥ|Φ0

〉

〈ΨT |Φ0〉

=

〈
Φ0|Ĥ|ΨT

〉

〈Φ0|ΨT 〉

=

∫
f(R)[ĤΨT/ΨT ]dR∫

f(R)dR

= lim
M→∞

1

M

∑

m

ĤΨT (Rm)

ΨT (Rm)
. (3.53)

Finally, the function controlling population growth of the walkers is no longer

just the potential energy U(R) but is instead the full local energy EL(R), which

varies much less strongly as a function of electron positions than the potential,

especially with a good trial function ΨT which is close to an energy eigenstate.

In practical codes, a number of further modifications to the Green function

are made, either to increase efficiency or to remove potential sources of bias. The

scheme implemented in the code used in this research is that of Umrigar, Nightingale

and Runge [167]. The most important further step is to introduce a Metropolis

accept/reject step to ensure that the algorithm obeys detailed balance. This works
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by only accepting trial moves R→ R′ with a probability

A(R′ ← R) = Min

(
1,
G∗(R,R′; ∆τ)|ΨT (R′)|2
G∗(R′,R; ∆τ)|ΨT (R)|2

)

or rejecting them otherwise. This only has an effect when ∆τ is finite and serves

to reduce the timestep error, and ensures that in the limit of perfect importance

sampling, when ΨT = Φ0, the result can be exact for finite timestep.

There are also significant changes made to the Green function in the vicinity

of a bare nucleus, designed to limit the drift vector to remove its divergence there,

and to prevent electrons overshooting nuclei. Finally, one can make modifications

to prevent bias due to population control, as the above algorithm is only exact in

the limit of very large populations.

These improvements, combined with the much lower variance of the local

energy and the greatly-increased efficiency of sampling in areas of greater significance

to the energy, result in an increase in efficiency of many orders of magnitude. This is

what makes importance-sampled DMC feasible even for large numbers of electrons

N ∼ 1000.

3.3.4 The Fixed Node Approximation

One very important assumption implicit in the use of diffusive walkers to represent

a wavefunction has been neglected so far. While a density of walkers or walker

weights can only be a positive quantity, the wavefunction of a system of fermions

must, in order to obey antisymmetry, have both negative regions and positive re-

gions. If left to evolve unconstrainedly, the algorithm described so far will cause the

wavefunction to evolve towards the bosonic ground state, which is symmetric under

exchange of electrons, even though the trial function is antisymmetric. The most

obvious method to solve this would be to allow distinct positive and negative walkers

diffusing around separately, with the value of the wavefunction being the difference

in weighted densities, but in this case the positive and negative populations collapse

individually to the bosonic ground state and the difference in weighted densities
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tends exponentially to zero and nothing has been achieved.

A number of methods exist for attempting to solve this problem, which is one

instance of the wider ‘Fermion Sign Problem’ that plagues a variety of methods in

quantum mechanics. The principal method is to perform release node calculations

[31], in which, starting from the fixed node distribution, the behaviour of the walkers

is changed such that they are allowed to cross the nodes of the wavefunction, but

each time they do so they pick up a sign-change that means they contribute to

statistical averages with the opposite sign. If the relaxation time from the fixed-

node distribution to the bosonic ground state times the energy difference between

the fermionic and bosonic ground states is less than unity, then a reliable fermionic

ground state energy can be extracted. However, this is rarely the case in practice,

and nevertheless the calculations are computationally extremely demanding, so the

method is rarely used in anything except the homogeneous electron gas.

The most commonly used method, therefore, is to use what is known as the

Fixed Node Approximation. Here, the function f(R) = ΨT (R)Φ0(R) is forced to

remain non-negative everywhere by rejecting any moves in which a walker crosses

a node of the trial function. This is easy to test for as if a node as been crossed,

ΨT (R′) will have opposite sign to ΨT (R). When this restriction is enforced, Φ0(R)

automatically has the same nodes as ΨT (R). We then refer to Φ0(R) as the fixed-

node ground state, sometimes written ΦFN
0 (R) to distinguish it from the true ground

state (the label is usually dropped in cases where we have no means of obtaining

or distinguishing this true ground state). The corresponding energy EFN
0 can be

shown to be variational [123, 145], in that EFN
0 ≥ E0 where E0 is the energy of the

true ground state.

In this approximation, walkers are confined to the nodal pocket in which they

start. If all the nodal pockets are of the same energy, this will not present a problem

as the so-called “Tiling theorem” [30, 139] ensures that all the nodal pockets of the

ground state of a Hamiltonian are all equivalent by permutation symmetry. Since we

are always working with nodal surfaces from wavefunctions which are the ground

states of some Hamiltonian (be it the Kohn-Sham or Hartree-Fock or whatever
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method we used for the generation of the orbitals), this always holds in practice.

3.3.5 Operator Estimators in DMC

In variational Monte Carlo, the distribution of the sampled points Rk in config-

uration space is a stochastic representation of the probability distribution of the

trial wavefunction, |ΨT (R)|2. Operator expectation values are therefore evaluated

by taking the mean over values of the local operator at each step. In DMC, how-

ever, the sampled points are distributed according to f(R) = ΨT (R)Φ0(R), which

complicates the evaluation of some expectation values.

For operators that commute with the Hamiltonian, there is no problem. By

manipulations equivalent to Eq. 3.53 one can show that evaluating the so called

“mixed” estimator

Omixed =
∑

k

OL(Rk) (3.54)

over a set of configuration-space positions sampling f(R) yields exactly the same

expectation value as if we had sampled |Φ0(R)|2. Mathematically, this follows be-

cause

Omixed =

∫
dRΦ0(R)ÔΨT (R)∫
dRΦ0(R)ΨT (R)

=

∫
dRΦ0ÔΦ0∫
dRΦ0Φ0

. (3.55)

in these cases. Evaluating the mixed estimator is still useful even when the operator

does not commute with the Hamiltonian, especially if the wavefunction is a good

approximation to the true ground state. Expectation values of operators such as

Fourier components of the density are evaluated in this way. However, since in-

evitably ΨT differs from Φ0, the mixed estimator differs from the ground state value

O0, with an error linear in the error in the trial wavefunction.

In these cases, it is sometimes an improvement to use the so-called “extrap-

olated” estimator. Writing

ΨT = Φ0 + ∆Ψ (3.56)
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and noting that the VMC expectation value OV MC is

OV MC =

∫
dRΨT (R)ÔΨT (R)∫
dRΨT (R)ΨT (R)

, (3.57)

we note that if we were to take

Oext = 2Omixed − OV MC , (3.58)

then the term linear in ∆Ψ cancels and we are left with

Oext =

∫
dRΦ0(R)ÔΦ0(R)∫
dRΦ0(R)Φ0(R)

+O [( ∆Ψ)2]

= O0 +O [( ∆Ψ)2] .

This works reliably if the trial wavefunction is highly accurate, but is less useful

otherwise as the error can fluctuate wildly.

Finally, a variety of schemes have been proposed to attempt to access the

“pure” distribution |Φ0(R)|2, and thus to evaluate “pure” estimators 〈Φ0|Ô|Φ0〉.
The most well established of these is called forward (or future) walking [14], which

projects the walker through imaginary time, to find the set of weights w(R) =

Φ0(R)/ΨT (R) required to change the walker density obtained in DMC, ΨT (R)Φ0(R),

into the exact ground state. Once these are known, the exact ground state expec-

tation value can be obtained by simply multiplying the local operator OL(R) by

these weights and normalizing. Future walking does, however, suffer from serious

stability issues and scales very poorly with system size. The same is true of the pure

distribution DMC method of Caffarel [21, 22].

The Hellman-Feynman theorem has also been applied to the DMC algorithm

as a whole in an attempt to sample pure estimators [59]. It may be possible to think

of this approach as an optimized approach to future walking without many of the

drawbacks of the original formulation.
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3.3.6 Pseudopotentials in DMC

One major problem remains in our method — that of evaluating energies of systems

of atoms described using nonlocal pseudopotentials. In our discussion of the local

energy thus far we have assumed that it could be expressed in a local form, as

ĤΨ(R)

Ψ(R)
= EL(R) (3.59)

where EL(R) is simply a function of the electron coordinates R. If there are nonlocal

pseudopotentials present, however, this is no longer possible as the action of the the

nonlocal projectors on the fixed node ground state, V̂nl =
∑

i

V̂nl,iΦ0

Φ0
, is unknown

as we do not know an analytic form for Φ0.

The most common scheme used to circumvent this problem is known as the

pseudopotential localization approximation [121]. This replaces the true Hamilto-

nian with an effective Hamiltonian, using the trial wavefunction instead of the true

ground state:

Heff = K + Vloc +

∫
dR′ 〈R| V̂nl |R′〉ΨT (R′)

ΨT (R)
(3.60)

where K is the kinetic energy operator and Vloc is the local part of the potential en-

ergy. Propagating this Hamiltonian through imaginary time yields the distribution

feff(R) = Ψeff(R)ΨT (R) where Ψeff(R), which has taken the role of Φ0(R), is the

fixed node ground state of the effective Hamiltonian. The last term in the effective

Hamiltonian above is a local function of R, but this has come at the cost of making

the total energy no longer a variational estimate of the ground state energy. To see

this, we note that for the trial wavefunction, HeffΨT/ΨT = HΨT/ΨT , so

Eeff =
〈Ψeff |Heff |ΨT 〉
〈Ψeff |ΨT 〉

=
〈Ψeff |H|ΨT 〉
〈Ψeff |ΨT 〉

(3.61)

but this is not equal to the variational fixed node energy of the true Hamiltonian H
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acting on Ψeff , which would be

EFN =
〈Ψeff |H|Ψeff〉
〈Ψeff |Ψeff〉

, (3.62)

because H and Heff differ. We therefore no longer have a variational principle on

Eeff , which may now be above or below the true ground state. In practice, this

is found to be a adequate approximation as long as the trial wavefunction is good

[121].

An alternative approach, the recently-proposed Casula scheme [24], modifies

the Green function and the details of the algorithm in a variety of ways, with the

result that the effective ground state energy Eeff is variational on the true ground

state, so that Eeff ≥ E0. Indeed, in general, the ground state energy of the effective

Hamiltonian without this scheme seems to come out usually slightly lower than

with it. This improvement in accuracy comes at the cost of a potentially increased

timestep-dependence, necessitating smaller timesteps and thus slower convergence

of error bars.

3.3.7 Full Algorithm

We now have all the prerequisites to write down a practical DMC algorithm:

1. Generate a set of configurations Rk with k = {1, . . . , Nconfig} distributed

according to |ΨT |2 using variational Monte Carlo. These configurations are

used as initial positions for the DMC walkers.

2. Propagate each walker by a suitably-chosen timestep ∆τ :

R′ = R + ∆τχ + ∆τ∇ ln |Ψ| (3.63)

where χ is a normally-distributed 3N -dimensional vector of unit variance.

3. Impose the node-crossing rejection step and the detailed balance rejection step.
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4. Branching and decay of walkers is implemented by replacing a walker with

Mnew = INT(exp[−∆τ(EL(R) + EL(R′)− 2ET )/2] + η) (3.64)

copies of itself, where η is a uniformly-distributed random number between 0

and 1.

5. The trial energy ET is adjusted by ET (τ) = Ebest(τ) − 1
g∆τ

ln M(τ)
M0

to keep

walker population roughly constant.

6. If a sufficient number of equilibration steps have already taken place, accumu-

late the current mean of the local energy over the walkers, ĒL. Also accumulate

the local values of any other operators required, for later statistical processing.

7. Return to step 2 and iterate until sufficient data has been acquired.

This roughly describes the process in CASINO [125], the code used for all the QMC

work in this thesis.

3.3.8 Sources of Error in Diffusion Monte Carlo

As previously stated, the goal of diffusion Monte Carlo is to find the exact ground

state of a given Hamiltonian. However, in reality, because of approximations that

must be made for the practical implementation of the algorithm or the evaluation of

the action of Hamiltonian on the wavefunction, there are inevitable sources of error

affecting its results beyond the mere statistical noise. While we have touched on

many of these already in this section, and will return to some of them in the course

of the chapters to come on specific applications, we will summarize the significant

sources of error briefly now.

Timestep Error

Timestep error occurs because of the approximation made in Eq. 3.52 that the

local energy and drift velocity terms EL(R) and v(R) in the Green function are a
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smoothly varying function of the electron positions, and thus that EL(R) ≃ EL(R′)

and v(R) ≃ v(R′). It is possible to show that the error introduced by the timestep

error is of order (∆τ)2 and is thus easily controllable. However, the error becomes

notably worse in certain situations. When the wavefunction is a rapidly varying

function of electron position, as is the case, for example, when an electron is close to

a bare nucleus, then the prefactor increases sharply. Reducing the timestep reduces

the error, but this must always be balanced against the increased serial correlation

and thus the longer runtimes required to achieve a given error bar; it is therefore

important to try and minimize such effects. For this reason, it is rare to attempt

calculations in DMC with bare nuclei even if using a basis capable of accurately

representing the orbitals of the core electrons. The pseudopotential approximation

aids in this regard, although it introduces an error of its own due to pseudopotential

localization. The control of timestep bias is discussed further in Section 6.3.3.

Fixed Node Error

The error resulting from the application of the fixed node approximation has already

been discussed, as have the techniques for overcoming it. The variational inequality

EFN
0 ≥ E0 ensures that in the absense of pseudopotentials we always find a higher

energy than the true ground state, so in some situations the success of our simulation

can be judged by the fraction of the total energy that is recovered. When highly

accurate quantum chemistry calculations are available to give the true ground state

energy, we can test the accuracy of the nodes by determining the fraction of the

correlation energy recovered by fixed node DMC for a particular trial wavefuncion.

In modern simulations with backflow and multideterminant trial wavefunctions, this

can be upwards of 99%, even for difficult systems like full-core atoms beyond the

first row.

The nodal surface is an (Nd − 1) dimensional object, but the only certain

piece of information we have on it a priori is that the wavefunction is zero when

two electrons coincide. This only defines a (N −1)d dimensional system. For d = 1,
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a one dimensional system, Nd − 1 and (N − 1)d are the same, so the nodes are

exact and highly accurate results can therefore be obtained (eg [42]). However, for

all other systems, the coincidence points constrain the nodal surface somewhat but

do not define it. The fixed node approximation then introduces what is generally

thought of as an uncontrolled approximation. In Section 5.2.5 we present a novel

way of estimating the magnitude of the error for a particular system.

Finite Size Effects

Finite size effects result from the use of the supercell approximation, in which one

attempts to model an infinite (or at least, effectively infinite) system with underlying

periodicity, by a supercell containing a finite number of repetitions of this periodic

part. Finite size errors can take a number of forms, and indeed represent the ma-

jor challenge to be overcome in several parts of this thesis, although in different

applications they manifest themselves in different ways.

The simplest kind of such errors, the ‘single-particle’ finite size effects, are the

result of replacing the smooth density of states of an infinite system by the discrete

states of a finite system. Consider, for example, an electron gas, with single-electron

orbitals which are simply plane waves eik.r. In a finite system we are limited to k-

points commensurate with the supercell we have chosen. For a cubic supercell of side

length Lα, we require kα = 2π/Lα. For the finite system, we sample the Brillouin

zone with a finite sum
∑

k over these k-points. The sum approximates the integral
∫

dk but inevitably, as the sampling is discrete, some sort of error is made. In the

small supercells we are often limited to in QMC, this error can be large. It is often

possible to improve the sampling merely by offsetting the entire grid from k = 0

or by averaging over different offsets. This is discussed further in the discussion on

boundary conditions for periodic many body systems in Section 4.2.

It is often adequate to assume that the errors due to the k quantization are

roughly the same in DFT as they are in QMC. If this is the case, the QMC energy

for an infinite system may be obtained from the QMC energy for a system of size L
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by adding corrections obtained within DFT:

EQMC
T (∞)− EQMC

T (L) = EDFT
T (∞)− EDFT

T (L) .

We can thus correct the QMC energies by simply adding the difference between a

very large system in DFT (or a truly infinite one where this is possible analytically)

and one of the largest size we can manage in QMC.

Other types of finite size error have subtler effects on the energies, and are

unique to truly many-body methods. These many-body errors can affect both the

kinetic and the potential energies, and have only recently begun to be addressed

theoretically. They result from a number of effects due to the constraints imposed

by the size of the supercell. In the kinetic energy, the fact that electrons see, beyond

a certain distance, only periodic replicas of themselves and their nearest neighbours,

means that a certain contribution to the kinetic energy due to long-range correlation

is lost. In the potential energy, in which the Ewald method is traditionally used to

model the interaction of periodic copies of the electrons in the supercell, the fact that

the correlation hole has to be ‘squashed’ into a single supercell affects the calculated

exchange-correlation energy. Both effects can be dealt with using similar methods,

as addressed in a recent paper by Chiesa et al. [33]. We discuss the application of

these ideas to more complex systems in Section 5.2.6.
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Localization Lengths

4.1 Polarization and Localization

The properties that, on a macroscopic level, distinguish between metals and insu-

lators are dc conductivity and static polarization: an insulator has vanishing con-

ductivity at low frequency and low temperature, and sustains static polarization in

an applied electric field. Two conditions on a system necessary for dc conductivity

are that there must be excitations at vanishingly small energies above the ground

state, and that these must represent charge distributions delocalized throughout the

system.

The traditional band theory based approach, based on a Slater determinant

of one-electron orbitals, explains metallic behaviour in terms of the accessibility

of low-lying single particle excitations and the question of whether a particular

wavefunction represents a metal or an insulator is easily answered: if the density of

one-electron states is finite at the Fermi level, the system is a metal; if not, it is an

insulator.

An alternative method is to consider whether the electrons in the system

are free to move or if they are localized. A suitable unitary transformation of the

determinant of Bloch functions of an insulator gives an equivalent determinant of

exponentially localized one-electron Wannier functions [18]. The exponential local-
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ization of the Wannier functions implies a corresponding exponential localization

of the one-electron density matrix ρ(r, r′) as a function of r − r′, and it has been

shown [148] that any system for which the second moment of ρ(r, r′) is finite must

be insulating.

In the one-electron theory of disordered systems, the energy eigenfunctions

may be localized and a finite density of states at the Fermi level no longer implies

conducting behaviour, but the more general idea that insulating behaviour results

from wavefunction localization survives. The connection between the insulating

state and localization of electron states was originally established by Kohn in a

milestone paper in 1964 [92], where he showed that the ground state many-electron

wavefunction of an insulator displays localization in a specific way, referred to as

disconnectedness. The wavefunction of the extended system is referred to as dis-

connected if it can be expressed as a sum of functions ΨM which are individually

localized in disconnected regions of the 3N dimensional hyperspace defined by the

N electron coordinates, with an overlap 〈ΨM|ΨM′〉 which vanishes exponentially

with system size. Kohn argued that all metal to insulator transitions, even those in

strongly correlated interacting solids, are accompanied by this form of localization

of the many-electron wavefunction.

What has become known as the ‘modern theory’ of polarization and localiza-

tion has its origins in King-Smith and Vanderbilt’s 1993 paper, where they proposed

a method for the calculation of polarization changes in extended solids [85], which

recast the problematic Kubo formula approach in terms of ground state properties

only, and established the link to Wannier functions. Marzari and Vanderbilt later

advanced the understanding of this link in a 1997 paper [117] introducing maximally

localized Wannier functions. In 1999, Resta and Sorella extended the formalism to

discuss localization in many-electron systems [144], and a further breakthrough was

the rigorous mathematical description of polarization and localization in terms of

probability generating functions by Souza, Wilkens and Martin in 2000 [156]. A

review by Resta [141] summarizes the development of the theory up to 2002.

There have been a handful of calculations of localization lengths [148, 172],
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and many calculations of quantities depending on polarization [151, 12]. These have

mostly been within single-particle approaches, principally density functional theory

within the LDA, and little work exists on the potentially more interesting correlated-

electron case. Among the exceptions are two QMC studies, one of phase transitions

in the one-dimensional ionic Hubbard model [176], and one of the dielectric response

of periodic systems [165]. In the latter, it was observed that the inclusion of many-

body correlation effects dramatically affected the value of the polarizability and

improved its convergence with system size by decreasing the localization length,

a conclusion supported by calculations in which self-interaction corrections were

included in calculations of Born effective charges [51].

In this chapter, we present a novel derivation of the known expressions for

polarizations and localization lengths in terms of many body wavefunctions, discuss

their evaluation within the frameworks of density functional theory and quantum

Monte Carlo, and investigate their behaviour in model systems consisting of periodic

arrays of quantum dots. These models, which combine inherent tunability with a

simplified analogy to the behaviour of real atoms, should make an excellent testing

ground for the application of these recent ideas within a fully many-body theory.

4.2 Boundary Conditions and Periodicity in Ex-

tended Systems

A crystal of a solid of macroscopic size contains of order 1024 atoms and has dimen-

sions of order 108 times the lattice parameter defined by the primitive cell vectors

Ai (i = 1, . . . , d where d is the spatial dimension). This scale difference underlies the

simplifying assumption of taking a solid as being infinite in extent and using periodic

boundary conditions. In the following, we briefly recount the consequences of this

assumption in one electron theory, before exploring its implications for many-body

wavefunctions of the sort used in quantum Monte Carlo calculations.

In the one-electron picture of a perfect crystal, Bloch’s theorem provides us
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with a recipe for using this periodicity: the symmetry of the one-electron effective

potential ensures that the single-particle eigenfunctions of the Hamiltonian are also

eigenfunctions of lattice translations T̂R for all lattice vectors R = n1A1+· · ·+ndAd.

The Hamiltonian obeys

Ĥ(r + R) = Ĥ(r) , (4.1)

and this eventually leads (see eg [16, 89]) to eigenstates of the Bloch form:

ψik(r) = eik.ruik(r) (4.2)

where uik is periodic in r such that uik(r + R) = uik(r), and the Bloch wavevectors

k may be chosen to lie in the first Brillouin zone. The Bloch functions obey ψik(r+

R) = eik.Rψik(r), which is known as Bloch’s theorem.

The individual Bloch functions are only determined by the Hamiltonian up

to an arbitrary k-dependent phase — the choice of phase as a function of k being

referred to as a gauge. For simplicity we limit our consideration to gauges in which

ψk is a differentiable function of k and ψik = ψi(k+G) for all reciprocal lattice vectors

G. This also ensures that ui(k+G) = e−iG.ruik. Gauge transformations that preserve

these properties take the form:

ψk → eiφ(k)ψk (4.3)

where φ(k) = k.R− β(k), with β(k) being a periodic, differentiable function of k.

Within one-electron theory, Bloch’s theorem allows us to reduce the problem

of solving the Schrodinger equation for an infinite periodic crystal to that of solving

it for a single unit cell subject to “twisted” boundary conditions. By averaging over

twists, which is achieved by integrating with respect to k over the first Brillouin

zone, an exact result is obtained for the infinite periodic crystal.

In many electron theory, by contrast, the electron-electron interactions are

treated explicitly rather than via an effective potential, and the coordinates of elec-

trons in nearby cells are explicitly correlated. A wavefunction for the electrons in
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a single unit cell would be inadequate to describe a realistic system, so consider

an N -electron simulation cell, preferably many times larger than the unit cell of

the underlying crystal, with sides Ai, . . . ,Ad. Given any lattice vector R defined in

terms of these simulation cell vectors, the Hamiltonian is invariant under translation

of any single electron by this lattice vector:

Ĥ(r1, . . . , ri + R, . . . , rN) = Ĥ(r1, . . . , ri, . . . , rN) . (4.4)

This symmetry is not satisfied in the real system because the Coulomb interaction

is not periodic, but under periodic boundary conditions the Coulomb interaction is

replaced by the periodic Ewald interaction obtained by solving Poisson’s equation

subject to PBCs across the simulation cell and the above symmetry becomes ex-

act. As the simulation cell is made larger, the finite-size errors resulting from this

replacement diminish, and the properties of the artificially periodic system tend to

those of a real crystal.

The effect of this symmetry is that the N -electron wavefunction Ψ can only

change by a phase factor when any single electron is translated by a lattice vector

R. Moreover, because the electrons are all identical, the phase factor must be the

same no matter which of the electron coordinates we choose to translate. This can

be see by postulating that the phase factors are different for r1 and r2, giving two

equations

Ψ(r1 + R, r2, . . . ) = eik1.RΨ(r1, r2, . . . ) (4.5)

and

Ψ(r1, r2 + R, . . . ) = eik2.RΨ(r1, r2, . . . ) . (4.6)

Applying the permutation operator to Eq. 4.5

Ψ(r2, r1 + R, . . . ) = −eik1.RΨ(r1, r2, . . . ) (4.7)

and then translating the second coordinate on the LHS by −R we get
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Ψ(r2, r1, . . . ) = −ei(k1−k2).RΨ(r1, r2, . . . ) . (4.8)

Finally, permuting back gives

Ψ(r1, r2, . . . ) = ei(k1−k2).RΨ(r1, r2, . . . ) , (4.9)

which can only be fulfilled for k1 − k2 ∈ {G} where {G} is the set of reciprocal

lattice vectors of the simulation cell. Because the phase factor eik.R is unchanged

by translations of k by elements of {G}, we can map k into the first Brillouin

zone without any loss of generality, and we conclude that k1 = k2 = k for all the

electrons. We thus have the Bloch condition on the many-body wavefunction Ψk:

Ψk(r1, . . . , rN) = eik.XΦk(r1, . . . , rN) (4.10)

where Φk is periodic in all the electron coordinates over a simulation cell. Note the

appearance of the so-called electronic dipole operator,

X =
N∑

i=1

ri , (4.11)

in the phase factor, playing the role of the electron coordinate. The same restrictions

on gauge transformations φ(k) apply to Ψk as those described for Eq. 4.3.

Incidentally, there is also a second symmetry in a perfect crystal due to the

periodic nature of the external potential. If one translates every electron coordinate

simultaneously by a lattice vector of the primitive cell (not the simulation cell), the

Hamiltonian again remains invariant. Although this symmetry imposes a second

Bloch-like condition on the form of the wavefunction, it is not as useful as the above

and will not be required here.
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4.3 Localization Lengths in One-Electron Theo-

ries

A great deal of previous work has gone into developing the theory of polarization

and localization in one-electron theories [85, 117, 148, 170]. As the focus of this

work is on many-body methods, the detailed derivations of these results will not

be reproduced here, especially as they are essentially a simplification of the many-

body results of the next section. For simplicity we describe only the situation where

Ai, . . . ,Ad are orthogonal. The generalization to non-orthogonal simulation cells is

straightforward but complicates the notation.

Restated in terminology closer to that used in the following section, the

central result of King-Smith and Vanderbilt’s paper [85] is that a change ∆P =

P(1) − P(0) in the polarization Pλ parameterized by some variable λ which varies

between 0 and 1 can be expressed in terms of the periodic parts u
(λ)
ik of the nb bands

of one-electron Bloch functions as

P (λ)
α =

iqe
(2π)d

nb∑

i

∫
dk〈u(λ)

ik |∂/∂kα|u(λ)
ik 〉 , (4.12)

where α = 1, . . . , d is a Cartesian direction. For the set of Wannier functions defined

by

w
(λ)
i (r−R) =

1

Vk

∫
dk e−ik.R ψ

(λ)
ik (r) , (4.13)

with Vk = (2π)d/V the volume of the Brillouin zone, the polarization P(λ) is the

first moment of the Wannier function centered on R = 0:

P(λ) =
qe
V

nb∑

i

〈w(λ)
i |r|w

(λ)
i 〉 , (4.14)

where qe is the charge on an electron. It can be shown that gauge transformations

among the occupied orbitals are only capable of changing this quantity by discrete

jumps of whole quanta of polarization qeR/V .
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The sum of the second moments of the occupied Wannier functions can be

expressed in k-space in a very similar fashion. Marzari and Vanderbilt [117] showed

that the quadratic spread Ω of the Wannier functions of the occupied Bloch orbitals

Ω =

nb∑

i

[
〈wi|r2|wi〉 − |〈wi|r|wi〉|2

]
(4.15)

can be decomposed into a gauge-dependent part Ω̃ and a gauge-invariant part ΩI ,

where

ΩI =
V

(2π)d

∑

α

∫
dk

(
nb∑

i

〈∂uik

∂kα

∣∣∣
∂uik

∂kα

〉
(4.16)

−
nb∑

i

nb∑

j

〈∂uik

∂kα

∣∣∣ujk

〉〈
ujk

∣∣∣
∂uik

∂kα

〉)
, (4.17)

so the expectation value of the squared localization length, often written 〈r2〉 even

though strictly it is not
∑

i〈ψi|r2|ψi〉, can be obtained as 〈r2〉 = Ω/N ≥ ΩI/N .

Finally, Resta [142] and later Resta and Sorella [144] showed that by consid-

ering the Slater determinant Ψk formed from the occupied one-electron orbitals, the

polarization and localization can be expressed in terms of the quantity zα
N , defined

by

zα
N = 〈Ψk=0|ei(2π/Lα)Xα |Ψk=0〉 , (4.18)

as

Pα = lim
N→∞

qe
2π

Im ln zα
N (4.19)

and

ΩI = −
∑

α

(
Lα

2π

)2

ln |zα
N |2 . (4.20)

These results have found use in a number of calculations, using both many-body

methods ([165, 176]), and DFT ([148] and many others). In Section 4.4.4 we discuss

how to evaluate Pα and ΩI in DFT and present a minor improvement of our own,

but first we will discuss the similar relationships in many-body systems, proceeding
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down a somewhat different track to previous work and giving a new derivation of

the above relationships.

4.4 Polarization and Localization in Correlated

Many-Electron Systems

4.4.1 Many-Body Wannier Functions

As we showed in Sec.4.3, imposition of twisted boundary conditions on the Hamil-

tonian ensures that its many-body eigenstates are of a Bloch-like form

Ψk(r1, . . . , rN) = eik.XΦk(r1, . . . , rN) , (4.21)

and it is natural to imagine defining a many-body Wannier function (MBWF) in

analogy to the single-electron version:

WR =
1

Vk

∫
dke−ik.RΨk . (4.22)

There is, however, a fundamental difference between MBWFs and normal WFs that

it is important to point out. In a normal single-particle WF of an insulator, if

the integral dk is genuinely continuous, the resulting WF is exponentially localized

in real space [18]. On the other hand, it is only in the d-dimensional coordinate

X = r1 + r2 + . . . that WR, which is defined over the whole dN dimensional con-

figuration space of N particles, is localized. In the remaining dN − d dimensions of

the configuration space, the function remains extended.

If WR=0 has a peak at some configuration-space point (r1, . . . , r2), then by

shifting each electron coordinate ri by a lattice vector Ri, one arrives at the peak of

a different function WR, with R such that
∑

i Ri = R. If one chooses,
∑

i Ri = 0,

every electron has been shifted to a different cell but the MBWF still has the same

value. It cannot therefore be said to be localized in real space in any way, merely in
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some specific directions in configuration space.

One must therefore take care when defining the moments of these MBWFs, as

expressions like 〈W0|X|W0〉 are not necessarily normalized. In fact, as emphasized

by Resta [142], X̂ is not even an admissible operator in a Hilbert space obeying

PBCs, as the result of applying it to a function in the space is not periodic and thus

does not occupy the same Hilbert space as the original system. However, one can

still proceed if the system and the operators are carefully defined.

To avoid problems of normalization, we switch temporarily to considering a

finite “supercell” of copies of the simulation cell. This supercell has sides of length

Ãα = LαAα for integer Lα. By demanding that the wavefunctions be truly periodic

over this supercell, we have discretized the allowed k-points such that there are

Nk = L1L2 . . . Ld of them, which can be written as k = (m1δk1, . . . , mdδkd) where

m1, . . . , md are integers and δkα = 2π/Ãα. The Wannier function is then

WR =
1√
Nk

∑

k

eik.RΨk . (4.23)

Several routes could now be followed to define moments: the easiest, producing the

closest analogy to the single-particle versions, is to define a new operator Q̂ which

replaces X̂, according to

Q̂α =
sin(δkαX̂α)

δkα
=

sin(δkα · X̂)

δkα
, (4.24)

where δkα = (0, . . . , δkα, . . . , 0) is a vector of length δkα in the α direction. For a

finite supercell, Q̂α is periodic over Ãα, while in the limit Lα → ∞, it can be seen

that Q̂α → X̂α as required. We can then evaluate Q̂α|W0〉 as follows:
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Q̂α |W0〉 =
1

δkα

√
Nk

(
eiδkα·X̂ − e−iδkα·X̂

2i

)
∑

k

|Ψk〉

=
−i

2δkα

√
Nk

(
eiδkα·X̂

∑

k

|Ψk−δkα
〉 − e−iδkα·X̂

∑

k

|Ψk+δkα
〉
)

=
i√
Nk

∑

k

eik·X̂
( |Φk+δkα

〉 − |Φk−δkα
〉

2δkα

)

=
i√
Nk

∑

k

eik·X̂∆kα
|Φk〉 , (4.25)

where ∆kα
is a discretized derivative with respect to kα and we were able to replace

∑
k |Ψk〉 with

∑
k |Ψk±δkα

〉 because |Ψk〉 is a periodic function of k.

Evaluating the expectation value of Q̂α on W0 gives

〈W0|Q̂α|W0〉 =
i

Nk

∑

k′

∑

k

〈
Φk′

∣∣∣e−ik′.X̂eik.X̂
∣∣∣∆kα

Φk

〉
. (4.26)

It is clear that elements of this summation with k 6= k′ do not contribute: to prove

this, one can note that both Φk′ and ∆kα
Φk are periodic over the simulation cell

in every coordinate and so may be represented as dN -dimensional Fourier series

involving simulation-cell reciprocal lattice vectors only. Then, since k and k′ are

within the simulation-cell Brillouin zone and cannot differ by a non-zero simulation-

cell reciprocal lattice vector, it follows that the real-space integral gives zero unless

k 6= k′, leaving

〈W0|Q̂α|W0〉 =
i

Nk

∑

k

〈
Φk

∣∣∣∆kα
Φk

〉
. (4.27)

In the limit of very large supercells we can return to an integral over k: assuming a

choice of gauge for which Φk is a smooth function of k, this yields

〈W0|Q̂α|W0〉 =
i

Vk

∫
dk
〈
Φk

∣∣∣∂kα
Φk

〉
, (4.28)

The one-electron version of this result was originally derived by Blount [17]. The
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matrix elements in Eq. (4.28) can be evaluated by integrating over the region of

configuration space corresponding to the volume of the supercell in each electron

coordinate, with both W0 and Φk normalized to unity over that region.

Now, by comparing Eq. (4.28) with Eq. (4.12), and the equivalent many-

electron expressions of Ortiz and Martin [127], we see in analogy to the single-particle

version, that the electronic polarization is given by (Pel)α = qe〈W0|Q̂α|W0〉/V , so in

the large supercell limit this is

(Pel)α =
iqe

(2π)d

∫
dk 〈Φk|∂kα

Φk〉 (4.29)

This demonstrates that the change in polarization in response to an adiabatic change

of Hamiltonian can be obtained from the change in the first moment of the many-

body Wannier function W0. Periodic gauge transformations of the type defined in

Eq. (4.3) shift the right-hand side of Eq. (4.28) by the lattice vector R, corresponding

to a shift in the polarization by an integer multiple of the quantum of polarization

[85, 170].

A similar approach may be used to find the second moment of W0, giving

the spread of X̂ about its mean value, from which we can calculate the localization

length. Proceeding as above gives

Q̂αQ̂β |W0〉 = − 1√
Nk

∑

k

eik·X∆kα
∆kβ
|Φk〉 , (4.30)

and hence the large supercell limit of the tensor spread functional,

Ωαβ = 〈W0| Q̂αQ̂β |W0〉 − 〈W0| Q̂α |W0〉 〈W0| Q̂β |W0〉 , (4.31)
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can be written as

Ωαβ = −
(∫

dk

Vk

〈
Φk

∣∣∣∂kα
∂kβ

Φk

〉

−
∫
dk

Vk

∫
dk′

Vk

〈
Φk

∣∣∣∂kα
Φk

〉〈
Φk′

∣∣∣∂k′
β
Φk′

〉)
. (4.32)

Following [117], we split the spread functional into a gauge invariant part ΩI and a

gauge dependent part Ω̃, simply by choosing ΩI to include the terms in which the

phase eiφ(k) cancels:

Ω = ΩI + Ω̃ , (4.33)

where

(ΩI)αβ = −
∫
dk

Vk

(
〈Φk|∂kα

∂kβ
Φk〉 − 〈Φk|∂kα

Φk〉〈Φk|∂kβ
Φk〉
)

(4.34)

and

Ω̃αβ =

∫
dk

Vk

∫
dk′

Vk
〈Φk|∂kα

Φk〉
(
〈Φk′ |∂k′

β
Φk′〉 − 〈Φk|∂kβ

Φk〉
)
. (4.35)

Thus we see that (ΩI)αα = N〈r2
α〉c, where 〈r2

α〉c is the squared localization length in

the α direction (as defined by Resta [144] and in Souza, Wilkens, Martin [156]). Fur-

thermore, by re-expressing the many-body Bloch functions in terms of the Wannier

functions, the gauge-dependent part of the functional may be written as

Ω̃αβ =
∑

R 6=0

〈
WR|Q̂α|W0

〉〈
W0|Q̂β|WR

〉
. (4.36)

If the many-body Wannier functions of an insulator are taken as “disconnected”

Kohn’s functions, it must be possible to choose a gauge in which those localized on

different vectors R are non-overlapping in configuration space when the simulation

cell is large enough. The gauge-dependent part of the spread therefore tends to zero

with increasing simulation-cell size [156]. This allows us to limit our consideration
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to the gauge-invariant part ΩI .

4.4.2 Discretization

The above definitions of (ΩI)αβ and Pα provide a description of the behaviour of

both quantities in the thermodynamic limit, as L → ∞. If we wish to calculate

them in a simulation, however, in a necessarily finite system, we must return to a

discretized form.

We define the function f(q) = 〈Φk|Φk+q〉 and make use of the following

identities:

∂qα
ln f =

1

f
∂qα

f (4.37)

and

∂2
qα

ln f =
1

f
∂2

qα
f − 1

f 2
(∂qα

f)2 (4.38)

so that we can rewrite Eqs. 4.29 and 4.34 as

(Pel)α =
iqe

(2π)d

∫
dk [∂qα

ln 〈Φk|Φk+q〉]q=0 (4.39)

and

(ΩI)αα = − 1

Vk

[∫
dk ∂2

qα
ln 〈Φk|Φk+q〉

]

q=0

(4.40)

We also need to discretize the derivatives and integrals, for which we use discretized

forms of the derivative operators:

∂qα
ln f ≃ (ln f(q + δqα)− ln f(q))/δqα

∂2
qα

ln f ≃ (ln f(q + δqα) + ln f(q− δqα)− 2 ln f(q))/δq2
α (4.41)

which gives us

(Pel)α =
iqe
NkV

∑

k

(ln 〈Φk|Φk+δkα
〉 − ln 〈Φk|Φk〉) /δkα (4.42)
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and

(ΩI)αα = − 1
Nk

∑
k

1
δk2

α

[
ln 〈Φk|Φk+δkα

〉

+ ln 〈Φk|Φk−δkα
〉 − 2 ln 〈Φk|Φk〉

]
, (4.43)

By expanding 〈Φk|Φk+δkα
〉 order by order in δkα one can show that the term inside

the logarithm of the polarization expression is pure imaginary — as indeed it must

be on physical grounds so that the observable Pel is real. The periodicity of the

summand over the simulation-cell Brillouin zone allows us to make the substitution

k→ k + δkα in the second term of Eq. 4.43, which changes it from 〈Φk|Φk−δkα
〉 to

〈Φk+δkα
|Φk〉, so in all we have

(Pel)α =
−qe

NkδkαV

∑

k

Im ln 〈Φk|Φk+δkα
〉 (4.44)

(ΩI)αα = − 1

Nk

∑

k

1

δk2
α

ln |〈Φk|Φk+δkα
〉|2 . (4.45)

4.4.3 Ansatz Wavefunction

Eqs. 4.44 and 4.45 would be usable expressions in a real system if we were able

to calculate the many-electron wavefunction at every point on a grid of twist vec-

tors and calculate overlaps between wavefunctions of different twists. However, it is

usually more convenient to work with a single value of twist k, and calculate expec-

tation values of a single wavefunction. Moreover, in diffusion Monte Carlo, where

we never know the true ground state wavefunction itself, the above overlaps could

not be evaluated. We can put Eqs. 4.44 and 4.45 into forms suitable for evaluation

as single expectation values by considering the wavefunction of a much larger sys-

tem. This is a variant of the argument of [144, 156], and like them uses an ansatz

about the form of the wavefunction for the larger system and relates the polarization

and the localization length to a single expectation value of the “many-body phase

operator” introduced by Resta [142].
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In the course of discretizing, we introduced a supercell containing Nk =

L1L2 . . . Ld simulation cells. The N -electron Wannier functions WR(r1, . . . , rN), of

this supercell have been suggested as having the properties of the “disconnected”

functions introduced by Kohn [92] and are believed to be exponentially localized

in insulators. More precisely, WR(r1, . . . , rN) is localized in that region of the dN -

dimensional configuration space where the d-dimensional vector X = r1 + . . . + rN

is close to R. The exponential localization in phase space implies that the Hamil-

tonian matrix elements between neighbouring Wannier functions are exponentially

small, and hence that the ground state energy of the simulation cell is exponentially

insensitive to the choice of twist vector k. This insensitivity to boundary conditions

is a defining characteristic of the insulating state.

Previously, this supercell was introduced for mathematical convenience but

was not viewed as a physical system; in particular, its wavefunctions had the same

number of electrons, N , as the smaller simulation cell. Suppose, however, that we

now consider a real supercell system containing Nk simulation cells and Ñ = NkN

electrons subject to periodic boundary conditions. The wavefunction Ψ̃(r1, . . . , r eN)

of this physical supercell is not known and would be challenging to calculate, but the

availability of Nk N -electron Bloch functions Ψk and the supposition that electron

correlation in an insulator is a short-ranged effect suggests an appealing Hartree-

Fock-like ansatz. Assigning each of the Nk k-points an integer index c = 1, . . . , Nk,

we write, as in [144, 156],

Ψ̃(r1, . . . , r eN) = Â

Nk∏

k

Ψk(rN(c−1)+1, . . . rN(c−1)+N ) , (4.46)

where Â is the antisymmetrization operator. The ansatz assumes that the Ñ = NkN

electrons in the supercell correlate in groups of N at a time, so that Ψ̃ can be

written as an antisymmetrized product of Nk different N -electron wavefunctions.

If the Hamiltonian of the physical supercell were a sum of terms involving each

group of N electrons separately, as in a non-interacting system, Ψ̃ would be the
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exact ground state. In an interacting system Ψ̃ is clearly inexact, but since each

N -electron wavefunction Ψk was originally an allowable periodic wavefunction for

a smaller section of the solid, we are effectively requiring that beyond some range

L, the difference between the interactions of genuinely distinguishable electrons and

between periodic copies of the same electron becomes negligible. As the number of

electrons N in the simulation cell and the cell volume V increase, the importance of

correlations of longer range than the size of the simulation cell should decrease and

Ψ̃ should become more accurate.

As in [144, 156], we evaluate the expectation value

zN = 〈Ψ̃|e−iδkα·eX|Ψ̃〉 (4.47)

of the “many-body phase operator” e−iδkα·eX in this ansatz wavefunction, where

X̃ = r1 + . . . + rNkN . The overlap between two Slater determinants is the deter-

minant of the matrix of overlaps between the “orbitals”, which here are N -electron

wavefunctions labelled by a Bloch wavevector k. This remains true even in this more

complex many body case because any term in the antisymmetrization in which the

same electron coordinate appears with different boundary conditions in the bra and

the ket will vanish upon integration. We can thus write the expectation value as:

〈
Ψ̃|e−iδkα·eX|Ψ̃

〉
=

Nk∏

k

〈Φk|Φk+δkα
〉 . (4.48)

Comparing this result with Eq. (4.45), we see that

(ΩI)αα =
−1

Nk(δkα)2
ln
∣∣〈Ψ̃|e−iδkα·eX|Ψ̃〉

∣∣2 , (4.49)

and hence that the localization length 〈r2
α〉c = (ΩI)αα/N is given by

〈r2
α〉c =

−1

Ñ(δkα)2
ln
∣∣〈Ψ̃
∣∣e−iδkα·eX

∣∣Ψ̃
〉∣∣2 . (4.50)
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This is Resta and Sorella’s [144] result for the square of the localization length, or

quadratic spread, in the α direction. Henceforth, we shall treat the large system as

the single system we are studying and drop the tildes.

Eq. 4.50 was originally obtained by supposing that the electron density could

be decomposed into a sum of localized components, Fourier transforming, and ap-

plying the ansatz described above to produce a large enough system for convergence.

This melds well with the proposed identification [156] of many-body Wannier func-

tions with the “disconnected” parts of the many-body wavefunction hypothesized

by Kohn [92]. Since the disconnected parts are non-overlapping in the configuration

space of the electron coordinates, each can be considered as providing a separate

contribution to the electron density in real space.

4.4.4 Evaluation of Localization Lengths in a Plane Wave

Basis

In the work presented here, which uses DFT in 2D systems, localization lengths

are calculated from the one-electron Bloch functions using an adaptation of the

method described in [148]. In this approach, the many-body wavefunction Ψ in

Eq. (4.50) is a Slater determinant of single-particle orbitals, and the expectation

value
〈
Ψ
∣∣e−iδkα·X

∣∣Ψ
〉

is expressed as
〈
Ψ|Φ

〉
, where Φ is a Slater determinant of

the orbitals ψnk(rj) of Ψ, each multiplied by e−iδkα·rj . The overlap of two Slater

determinants is a determinant of the overlaps of the individual orbitals, and as

shown in [148], the only terms 〈ψnk|e−iδkα·r|ψn′k′〉 of this determinant which survive

the integration over the whole system are those for which k′ = k+δkα+G, where G

is a primitive reciprocal lattice vector (which may be zero). This makes the matrix

very sparse indeed. The determinant can be factorized as

〈
Ψ
∣∣e−iδkα·X

∣∣Ψ
〉

=
∏

k

detSα(k) , (4.51)
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where Snn′(k) is a matrix of overlaps between the periodic parts of the Bloch func-

tions at points k and k + δkα + G. If both k and k + δkα lie within the Brillouin

zone (so that G = 0), then

Sα
nn′(k) = 〈unk|un′k+δkα

〉 (4.52)

If k lies inside the Brillouin zone but k + δkα lies outside, then

Sα
nn′(k) = 〈ψnk| e−iδkα·r |ψn′k+δkα−G〉

= 〈unk| e−iG·r |un′k+δkα−G〉

where G is chosen such that k+ δkα−G lies inside the Brillouin zone (because that

was the state included in the original Slater determinant).

A further improvement we present in this work is to note that in a plane-wave

basis, the matrix elements can be evaluated directly from the plane-wave coefficients

c∗nk of bands n and n′ using Parseval’s relation, as:

Sα
nn′(k) =

∑

G′

c∗nk(G
′)cn′k+δkα−G(G′ + G) , (4.53)

where G is the reciprocal lattice vector that brings k + δkα back into the first

Brillouin zone if required. This expression allows very efficient calculation of zN and

thus the localization lengths, without the need to calculate overlaps in real space.

4.4.5 Evaluation of Localization Lengths in Quantum Monte

Carlo

The form of Eq. 4.50 is ideally suited to evaluating the localization length within the

framework of quantum Monte Carlo, and has been used in a small number of previous

applications in situations such as calculation of dielectric properties [165, 176]. As

with the evaluation of any expectation value in QMC, the result is subject to an

associated statistical error and in this section we examine its behaviour. In cases
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where the localization length is large, and |zN | is correspondingly small, the error is

somewhat poorly behaved and must be treated carefully.

In VMC, the algorithm provides us with a series of configurations R =

(r1, r2, . . . , rN) of electron positions distributed according to the probability distri-

bution defined by the trial wavefunction. The expectation value of the many-body

phase operator in Eq. 4.47 is evaluated by taking the sum of the electron coordinates

X(R) = r1 + r2 + . . .+ rN for each sampled configuration, calculating the quantity

zN(R) = e−iδkα·X(R) , (4.54)

and averaging over a sufficient number M of statistically independent configurations

to obtain:

zN =
1

M

M∑

m=1

zN (Rm) . (4.55)

As M tends to infinity, the sample mean zN tends to zN and the localization length

can be obtained from the formula

〈r2
α〉c = − 1

N

A2
α

(2π)2
ln |zN |2 ≈ −

1

N

A2
α

(2π)2
ln |zN |2 . (4.56)

The complication is that zN(Rm) is a complex number whose modulus is always

unity but whose mean zN is very small if the localization length is large. To en-

sure the result is not swamped by the statistical error σ|zN | in |zN |, the number of

configurations M must be large enough that σ|zN | ≪ |zN |.
The error in the localization length can be estimated as follows. Given a

complex random variable such as zN = xN + i yN , where xN and yN are statistically

independent real random variables with population mean values xN and yN , and the

uncertainties on the components obey σxN
≪ xN and σyN

≪ yN , it is easy to show

that

σln(|zN |2) = σln(x2

N
+y2

N
) ≈

√
4x2

Nσ
2
xN

+ 4y2
Nσ

2
yN

x2
N + y2

N

. (4.57)

Assuming that the M individual readings xN (R) and yN(R) used to calculate the
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sample mean values xN and yN are uncorrelated, σ2
xN

= σ2
xN
/M and σ2

yN
= σ2

yN
/M ,

so

σln(|zN |2) ≈

√
4x2

Nσ
2
xN

+ 4y2
Nσ

2
yN√

M(x2
N + y2

N)
, (4.58)

where σxN
and σyN

are the errors in a single reading xN (R) or yN(R). The error in a

single reading of zN near a metal-insulator transition can be estimated by assuming

its mean is in fact zero and that its possible values are distributed uniformly around

the unit circle in the complex plane, so that

σ2
xN

= σ2
yN

=
1

2π

∫ 2π

0

cos2 θ dθ =
1

2
. (4.59)

Finally, combining Eqs. 4.58 and 4.59 with Eq. 4.56, we obtain

σ〈r2
α〉c =

A2
α

√
2

(2π)2N |zN |
√
M

. (4.60)

Since 〈r2
α〉c = −κln |zN |2, where κ is a constant, |zN | approaches zero like

e−〈r
2
α〉c/2κ as 〈r2

α〉c tends to infinity, as we might expect at an appropriate type of

insulator-to-metal transition. It then requires exponentially longer runs to achieve

a given error bar on 〈r2
α〉c. For metallic systems with a small number of electrons

in the conduction band or holes in the valence band, the values of zN (R) from

configuration to configuration are very strongly correlated and it takes many more

than M VMC steps to accumulate M uncorrelated VMC samples. This occurs

because the values of zN (R) depend strongly on the current positions of the “extra”

or “missing” electrons in the cell and makes the determination of whether zN is in

fact 0 or is merely very close to it all but impossible.

4.5 Model Systems

In this section, we examine the behaviour of the localization lengths of the electrons

of various 2D model systems. In two dimensions (and also in quasi-1D systems with
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periodicity in only one direction) most of the important effects of bandstructure on

localization behaviour are already present, while the calculations remain relatively

tractable, even in QMC. We study these systems primarily with density functional

theory, although we use also variational Monte Carlo in certain cases.

Previous work [144] has indicated that the localization length correctly de-

scribes the various phases of a one-dimensional system of correlated electrons dis-

playing a band insulator to Mott insulator transition with a metallic phase at the

transition: a divergence is clearly observed in 〈x2〉c at sufficiently large system sizes.

Given that the localization of Wannier functions is closely related to the energy

gap, and that the localization length of a metal in band theory is always infinite, it

might be supposed that the localization length would in general diverge as a metal-

insulator transition is approached from the insulating side. As we shall show by

a number of examples, however, this is not the case: the presence or absence of

a divergence in one-electron theory depends on the nature of the bands that are

crossing. The same behaviour is observed in many-electron quantum Monte Carlo

simulations using a Slater-Jastrow trial function containing a Slater determinant of

single-particle orbitals from band theory. To examine the behaviour of the localiza-

tion length in a range of different situations, we study different arrangements of a

two-dimensional system of potential wells we shall refer to as ‘quantum dots’.

The simulations in this section were performed with a new 2D DFT code

written by the author, named DOTDFT, which uses a plane wave basis to repre-

sent the orbitals. DOTDFT uses the two-dimensional parameterization of the local

density approximation from [8], based on the QMC calculations of the correlation

energy of the 2D HEG by Tanatar and Ceperley [159]. The single-particle orbitals

are expressed in a basis of two-dimensional plane-waves with coefficients ci,k+G, such

that

ψik =
∑

G

ci,k+Gei(k+G).r (4.61)

This basis is complete and capable of representing any suitable Bloch function if the

sum over G includes the entire infinite set of reciprocal lattice vectors. In practice,
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the basis must be finite so the sum over G is truncated at some finite value of |G|,
such that |G| < Gcut. This is equivalent to setting a minimum length scale over

which the Bloch function is able to vary rapidly, as it is the large G terms that

will introduce short wavelengths and the corresponding high kinetic energies. It is

important, therefore, to ensure that the value of Gcut, usually written in terms of

the maximum plane-wave energy Ecut = 1
2
G2

cut, is large enough that the energy is

converged with respect to the size of the basis. This is tested beforehand for all the

systems described here.

The code follows the approach outlined in Chapter 2 and achieves self-

consistency by mixing the output and input densities using the Broyden method

[20]. The Hamiltonian consists of the kinetic energy (which is diagonal in the plane

wave representation), the Hartree potential, the exchange-correlation potential, and

an analytically specified external potential as detailed below. It is diagonalized di-

rectly, using the linear algebra package LAPACK [7]. This approach is feasible in

these systems, even though it would not be in real materials with very large basis

sets, because the low dimensionality and use of smooth external potentials means

the basis can be relatively small: a few hundred plane waves is usually sufficient.

4.5.1 Finite Size Effects

Previous studies [117, 144, 148] of electron localization in one-electron theories have

noted the relatively slow and monotonically increasing convergence of the local-

ization length as a function of system size. Sgiarovello, Peressi and Resta [148]

examined the localization length 〈x2〉c in GaAs, and Marzari and Vanderbilt [117]

the spread Ω of the maximally localized Wannier functions. Both came to similar

conclusions.

The slow convergence can be explained by reference to Eq. 4.50 and consid-

eration of the ansatz required to derive it. For the localization length to be well

converged, the k-point sampling must be dense enough to sample the variation of

the Bloch functions with k; the finite difference approximation used in Eq. 4.45 is
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then a good approximation to the continuous k derivative in Eq. 4.40. Failure to

converge with respect to δkα will appear as a variation of the localization length

with the number of k points in the grid.

In one-electron theory, the convergence of Brillouin zone integrals may often

be improved by shifting the entire grid of k vectors by a small amount k̃ relative

to Γ. This corresponds to changing the strict periodic boundary conditions applied

across the supercell to boundary conditions incorporating a twist vector k̃, which

must be the same for all one-electron orbitals. A supercell twist k̃ = δkα shifts every

k vector to one of its neighbours and is thus equivalent to a zero twist, implying

that k̃ may be chosen to lie within the supercell Brillouin zone. The variation of the

localization length with k̃ has not been investigated previously.

To examine the convergence of the localization length, a two-dimensional

array of potential wells capable of exhibiting a wide range of bandstructures was

studied. The external potential consisted of a square array of Gaussian wells or

“dots” of the form V (r) = −Vd exp(−|r − rc|2/ρ2), where rc sets the center of the

dot (in the center of the unit cell), ρ defines the width of the Gaussian, and Vd the

dot depth. Neighbouring dots were separated by a distance a (the side of the unit

cell, which is the same as the simulation cell in this case). The Kohn-Sham orbitals

for this external potential were calculated on an equally spaced grid of M × M

k-points within the Brillouin zone.

Figure 4.1 shows the localization length obtained by calculating zN (see

Eq. 4.47) for a weakly bound array of dots, each containing six electrons and thus

three filled bands of doubly-occupied states, for a range of M × M k-point grids

offset by k̃ from the Γ point.

The value of zN was calculated from from the plane-wave representation of

the orbitals as in 4.4.4. The parameters chosen were ρ = 3 and a = 10, with Vd

tuned to a value only just yielding an insulating state with the first three bands

fully occupied. If Vd is reduced further, the energy of the third band at k = (π
a
, 0)

becomes higher than that of the fourth band at k = (0, 0) and the system becomes

metallic. The smallest energy gap is therefore indirect and the localization length
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Figure 4.1: Convergence of the localization length as system size is increased. Dif-
ferent choices of offset of k-point grid strongly affect the speed of convergence.

might be expected to be only weakly dependent on the position of the grid, especially

given that the total DFT energy is converged to five significant figures for M &

5. However, as seen in Figure 4.1, in this situation chosen for its proximity to a

transition, the convergence is slow and a 20 × 20 supercell is required to converge

〈x2〉c to 1%. A k-point grid centered on Γ is seen to yield relatively slow convergence,

in agreement with previous studies that have shown the same behaviour for total

energies [139]. In this particular system, the most rapid convergence is achieved

when k̃ = π/(2Ma).

4.5.2 1D Chains

This is the simplest realizable model with interesting properties as regards metal-

insulator transitions. In this set-up, a two-dimensional periodic array of dots is

made quasi-one-dimensional by effectively isolating adjacent one-dimensional chains

of dots. The unit cell is widened in the y direction and a strong barrier potential
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is introduced to separate adjacent unit cells in that direction. Every point on the

k-space grid used for the Brillouin zone integration has ky = 0, with equally spaced

values of kx. The simplicity of the one-dimensional bandstructure produced by this

arrangement makes it easy to distinguish the effect of the symmetry properties of

the Bloch functions on the behaviour of the localization tensor near the insulator-

to-metal transition.

The lowest three eigenfunctions of an isolated dot that is not symmetric in the

x and y directions can be classified as s-like, px-like and py-like: the s-like functions

are nodeless, while the px- and py-like functions have nodes along the y- and x-axes,

respectively, and change sign under reflections in those axes. The s- and px-like

orbitals of a chain of dots oriented along the x axis mix to form hybrid bands, but the

py-like orbitals mix only with each other and form a completely separate band. By

varying the strengths of the confinement in the x- and y-directions independently,

the py-like band can be shifted relative to the s and px bands. Starting from an

insulating system with only the s and px bands occupied, this makes it possible to

lower the energy of the py band until a band insulator to metal transition occurs.

We model this arrangement with a unit cell of size a× b and an asymmetric

quartic potential of the form:

V (x, y) =
1

2
ω2

x

(
(x− a/2)2 − 2

a2
(x− a/2)4

)

+
1

2
ω2

y

(
(y − b/2)2 − 2

b2
(y − b/2)4

)
. (4.62)

By setting ωy > ωx and b > a, we ensure there is an enormous barrier in the y

direction, increasing the energy of the py band and creating a gap between the py

band and the s and px bands. Then, filling up the s and px bands, the Kohn-Sham

equations are solved self-consistently for gradually lower values of ωy until the upper

py band falls to meet the higher of the two symmetric bands at k = 0 and the energy

gap reduces to zero (see Fig.4.2(a)).

Because, by symmetry, there can be no matrix elements between states in the
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Figure 4.2: Quasi-one-dimensional chain of 4-electron dots: (a) Energy bands E(kx)
just before band crossing. Topmost flat band is py-like, middle is px-like, lowest is
s-like. (b) Energy bands E(kx) shortly after transition. (c) Localization length
〈x2〉c (blue) and inverse direct energy 1/(2Eg) gap (red) to lowest unoccupied state
as ω is reduced.
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crossing bands, they cannot hybridize and the upper band has no effect on the lower

until the moment at which they cross, at which point the lower band is no longer filled

and the localization length becomes infinite. Beyond the transition, the bands pass

straight through each other, remaining degenerate at the Fermi energy. Although

at any k-point on the sampling grid the lowest three eigenvalues are occupied, the

uppermost filled ‘band’ is in fact two separate bands overlapping; the matrix element

〈unkx
|un(kx+δkx)〉 of the periodic parts of the Bloch functions of the highest occupied

states at the k points either side of the crossing point therefore vanishes, yielding

an infinite 〈x2〉c. In this case, therefore, 〈x2〉c gives no information about the onset

of a metal-insulator transition from the insulating side. Figure 4.2(c) shows the

localization length in the x direction as the y confinement is reduced. The value of

〈x2〉c falls slightly as the eigenfunctions spread out more along y, but because the

uppermost unoccupied band does not influence the band below, there is no sign of

the transition until it happens.

On the other hand, if instead we fill the three lowest bands and adjust ωx

and ωy until the top of the px band touches the next band up (which has the same

reflection symmetry as px), the states that become degenerate at the band crossing

have the same symmetry under reflection in the x-axis. When kx is exactly zero,

the crossing bands have different y-reflection symmetries and cannot mix, but they

hybridize and repel each other for other values of kx. Figures 4.3(a) and 4.3(b) show

the lowest four bands just as the bands touch and shortly after, as ωx is reduced.

The system is never truly metallic, although the gap becomes arbitrarily small at

kx=0. Nevertheless, the rapidly changing nature of the band with kx means that the

overlap integrals 〈unkx
|un(kx+δkx)〉 become very small around kx=0, yielding a spike

in the localization length near the ‘transition’, as shown in Fig.4.3(c). In this case,

then, the localization length diverges even though no true metal-insulator transition

occurs.

A simple one-dimensional tight-binding Hamiltonian that models this situ-

ation can be constructed by considering only the highest occupied and lowest un-

occupied bands before and after the hybridization. The final eigenstates ψik(x) =

87



CHAPTER 4. LOCALIZATION LENGTHS

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

-1 -0.5  0  0.5  1

E
(k

x)
 (

H
a)

 
kx / (π/a) 

(a)

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

-1 -0.5  0  0.5  1

E
(k

x)
 (

H
a)

 

kx / (π/a) 

(b)

 0

 20

 40

 60

 80

 100

 120

 0.2  0.25  0.3  0.35  0.4
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

<
x2 >

c 
(B

oh
r2 )

1/
(2

 E
g)

 (
m

H
a-1

)

ωx (Ha / Bohr)

(c)
1/(2 Eg)

<x2>c

Figure 4.3: One-dimensional chain of 6-electron dots: (a) Energy bands E(kx) before
band crossing. (b) Energy bands E(kx) shortly after transition (c) Localization
length 〈x2〉c (blue) and inverse direct energy gap (red) to lowest unoccupied state
1/(2Eg) as ω is reduced.
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eikxuik(x) for i = 1, 2 are constructed from a linear combination of basis functions

χik(x) which are not eigenstates of the Hamiltonian themselves but have a Bloch-like

form with orthogonal periodic parts φik:

χik(x) = φik(x)e
ikx (4.63)

When expressed in the basis of the these functions the Hamiltonian matrix for small

values of k takes the form (for an appropriate choice of external potential):

Ĥ =


 ∆ + αk2 Γk2

Γk2 −∆− βk2


 , (4.64)

where α and β describe the curvature of the uncoupled Bloch bands and Γ the

matrix element between them.

Diagonalizing this Hamiltonian gives the eigenvalues

ǫ±(k) =
(α− β)

2
k2 ±

√(
(α + β)

2
k2 + ∆

)2

+ Γ2k4 (4.65)

This shows that when ∆ > 0, the two bands are separated by a direct band gap of 2∆

at k=0. As the value of ∆ reduces, the band gap also reduces. The two bands touch

briefly when ∆=0, after which, as ∆ becomes negative, they hybridize and repel in

the manner shown The behaviour of the bands ǫ±(k) and the two components of

the eigenvector Ψ−(k) is shown in Fig.4.4.

As ∆ → 0− around k ∼ 0, the state at k = 0 remains strictly that of the

upper band until ∆ = 0 at which point they are degenerate. Therefore, however

small δk is, the overlap nearest to k = 0 is always between states originating from

different bands.

Diagonalizing the Hamiltonian yields the eigenvectors

c±(k) =
1√

1 + |p±(k)|2
[
p±(k), 1

]
, (4.66)
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Figure 4.4: Eigenvalues ǫ±(k) of the two bands of the linear chain model (left), and
eigenvector components c1(k) (red) and c2(k) (green) of the occupied band Ψ−(k)
in terms of the two basis functions φ1k(x) and φ2k(x), for small, negative ∆ (right).

where

p±(k) =

(
α+ β

2Γ
+

∆

Γk2

)
±

√(
α+ β

2Γ
+

∆

Γk2

)2

+ 1 . (4.67)

The elements of the eigenvectors are the components of the periodic parts u±k of the

Bloch eigenstates ψ±k along the basis functions φ1k(x) and φ2k(x):

u±k (x) = c±1 (k)φ1k(x) + c±2 (k)φ2k(x) . (4.68)

Here we make the approximation that the dominant contribution to the localization

length comes from the variation of the eigenvectors with k rather than the basis

functions themselves. This is equivalent to neglecting the ∂φik

∂k
terms in ∂uik

∂k
. This

will inevitably become a valid approximation as ∆ → 0 as the orbitals φik are

largely independent of ∆ whereas the functions p±(k) vary very rapidly with it

around k = 0.

Only the lower state is occupied, so the localization length can be calculated

by substituting the expression for the periodic part u−k (x) of the occupied eigenfunc-

tion ψ−k (x) into Eq. 4.34. We can calculate the behaviour of the localization length

in the limit that the dominant contribution comes from the integral around k = 0.

We require

〈x2〉c =
a

2π

∫
dk

〈
u−(k)

∣∣∂
2u

∂k2

〉
−
∣∣∣∣
〈
u−(k)

∣∣∂u
∂k

〉∣∣∣∣
2

(4.69)
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around k = 0. We begin from

u(k) =
1

(1 + p2(k))1/2
[p(k), 1] (4.70)

dropping the superscripts on u and p, and we express the required derivatives with

respect to k in terms of p(k) and its derivatives:

∂u

∂k
=

−p(k)
(1 + p2(k))3/2

∂p

∂k
[p(k), 1] +

1

(1 + p2(k))1/2

[
∂p

∂k
, 0

]

=
1

(1 + p2(k))3/2

∂p

∂k
[1,−p(k)]

(4.71)

and

∂2u

∂k2
=

−3p(k)

(
∂p

∂k

)2

(1 + p2(k))5/2
[1,−p(k)] +

∂2p

∂k2

(1 + p2(k))3/2
[1,−p(k)]

+

∂p

∂k
(1 + p2(k))3/2

[
0,−∂p

∂k

]

=
1

(1 + p2(k))3/2

[∂2p

∂k2
− 3p(k)

(
∂p

∂k

)2

/(1 + p2(k)),

−p(k)∂
2p

∂k2
−
(

1− 3p2(k)

(1 + p2(k))

)(
∂p

∂k

)2]

(4.72)

Inserting these into the integrand of Eq. 4.69, most of the terms cancel:

〈
u(k)

∣∣∣
∂u

∂k

〉
=

1− 1

(1 + p2(k))
p(k)

∂p

∂k
= 0

〈
u(k)

∣∣∣
∂2u

∂k2

〉
=

1

(1 + p2(k))2

[
p(k)

∂2p

∂k2
−− 3p2(k)

(1 + p2(k))

(
∂p

∂k

)2

− p(k)∂
2p

∂k2
−
(

1− 3p2(k)

(1 + p2(k))

)(
∂p

∂k

)2
]

=
−1

(1 + p2(k))2

(
∂p

∂k

)2

(4.73)
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We can therefore express 〈x2〉c as

〈x2〉c =
a

2π

∫ π/a

−π/a

1

(1 + (p(k))2)2

(
∂p(k)

∂k

)2

dk . (4.74)

For fixed values of α, β and Γ, the scaling behaviour with the gap parameter

∆ may be extracted by changing variables to u = ∆/k2. We can write p(k) as a

function of u:

p(u) =
(H + u)−

√
(H + u)2 + Γ2

Γ
, (4.75)

where H = (α+β)/2. Noting that the integral is symmetric about k = 0, we obtain

〈x2〉c =
2a

π
√

∆

∫ ∞

∆a2/π2

u3/2
(

∂p−(u)
∂u

)2

(1 + (p−(u))2)2
du , (4.76)

which, for small enough values of ∆, becomes independent of ∆ except in the pref-

actor as long as the integrand remains finite. The integrand can be shown not to

contain negative powers of u by considering the leading orders of u in each of its

terms. Hence, for small ∆, the quadratic spread 〈x2〉c ∝ ∆−1/2. A numerical evalua-

tion of Eq. 4.76 is shown in Figure 4.5, and is roughly consistent with the behaviour

seen on the right hand side of the transition in Figure 4.3. However, because of finite

size effects and convergence issues, it proves difficult to obtain data close enough

to the point where the gap closes to determine if this relationship holds accurately.

Additionally, the constant term present due to the variation of the φik terms with

k that will obscure this scaling behaviour except very close to the transition.

4.5.3 2D Arrays

This arrangement restores the two-dimensional symmetry and returns to potentials

of the type described in Section 4.5.1, with a square lattice of unit cells each contain-

ing a single dot. In this situation, with the potential and the lattice symmetric in x

and y, the px and py bands are degenerate along ΓM . By filling the first three bands

and gradually reducing the strength of the confining potential, we can still drive the
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Figure 4.5: Two-band tight binding model corresponding to the system shown in
Figure 4.3. As ∆ → 0, the localization length diverges as ∆−1/2. The scale should
not be taken as comparable to that of Figure 4.3 as it depends on unknown param-
eters H and Γ as seen in Eq. 4.75.

system through a transition to a metallic state, but this now occurs when the indi-

rect gap above the p bands closes, as can be seen from Figure 4.6(a). Because the

highest occupied and lowest unoccupied states are well separated in reciprocal space,

the occupied states do not change nature or become strongly dependent on k as the

gap closes, and the matrix elements between the periodic parts of the eigenfunctions

at neighbouring k vectors behave smoothly. The localization length increases as the

bands are brought together because the confining potential is being reduced, but it

does not diverge on approach to the transition. This emphasizes again the impor-

tance of the approaching bands being able to ‘see’ each other if anything is to be

observed in 〈x2〉c.
The Kohn-Sham orbitals determined from this DFT simulation were com-

bined with an optimized 1- and 2-electron Jastrow factor to evaluate energies and

localization lengths within the many-electron variational quantum Monte Carlo

(VMC) method, using the CASINO program [125]. The variance minimization

procedure used to optimize the Jastrow factor resulted in close agreement between

the DFT and VMC energies. As a consistency check, we confirmed that localization
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Figure 4.6: (a) Energy bands E(k) along the high symmetry lines (inset: Brillouin
zone of two-dimensional square lattice). Dotted lines denote the Fermi level. (b)
Localization length 〈x2〉c in DFT and QMC as the dot confinement ω is varied (left
scale). Inverse DFT direct and indirect energy gaps (right scale). Below ω =0.305
the system is metallic so 〈x2〉c becomes abruptly infinite. No divergence is seen while
approaching the transition from the region of stronger confinement.
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lengths calculated using VMC trial functions consisting of a Slater determinant of

Kohn-Sham orbitals only, with no Jastrow factor, agreed with those obtained using

the DFT-based method of 4.4.4 to within the statistical error of the Monte Carlo

simulation.

Figure 4.6 shows the localization length of this indirect-gap system calculated

using both DFT and VMC. As expected, decreasing the confinement by moving

from right to left across the figure results in a gradual increase in the localization

length, followed by a discontinuous jump to an infinite value when the indirect

gap closes and some of the bands become partially filled. As discussed in 4.4.5, it

is difficult to evaluate very small values of zN (and hence very large localization

lengths) using VMC because the statistical errors begin to overwhelm the result.

It is clear, however, that the VMC localization length is shorter than the DFT

localization length and appears to track it. To the extent that it is possible to

judge, it appears that the DFT and VMC localization lengths jump discontinuously

to infinity at the same point, presumably because the VMC Slater determinant is

constructed using the occupied set of DFT orbitals, which changes discontinuously

when the DFT gap closes. If the orbitals in the VMC determinant had been chosen

to minimize the VMC energy, the VMC transition would presumably have occurred

at a smaller value of ω.

4.5.4 Graphene Model

The hexagonal lattice model of a graphene sheet provides a realistic example in which

a direct gap can be tuned down to zero. Real graphene consists of an equilateral

triangular (hexagonal) two-dimensional lattice with a basis of two carbon atoms,

labelled A and B in Figure 4.7(a), and four valence electrons per atom. Three

electrons per atom form strong bonds with their nearest neighbours, leaving the

electronic properties dominated by the one electron per atom in the π bonds. These

form a bonding π band and and anti-bonding π∗ band. A tight-binding analysis

involving just these bands, as described in [174, 146], demonstrates the main features
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of the bandstructure: the two electrons per primitive cell fill the π band, which

touches the π∗ band at the corners of the hexagonal Brillouin zone, labelled K in

Figure 4.7(b). Graphene is thus a semiconductor with a zero gap, and has interesting

transport properties caused by the zero density of states at the Fermi level. Since the

π band is fully occupied, its Wannier functions might be expected to be localized;

on the other hand, since the band gap is zero, the upper bound on the localization

length provided by the conductivity formula of Souza, Wilkens and Martin (Eq. 52

of [156]) is infinite.

If the potential is modified so that the energies of the two sites in the prim-

itive cell are no longer equivalent, a gap opens up at the Fermi energy and grows

in proportion to the difference of the on-site energies. We model this by placing

Gaussian dots of the form

VA(r) = −Vd exp(−|r− rA|2/ρ2) (4.77)

on the A sites and

VB(r) = −(1 + ∆)Vd exp(−|r− rB|2/ρ2) (4.78)

on the B sites. Figure 4.7 shows the form of this potential when ∆ = 0.

At finite ∆ there is an energy gap, caused by the attraction of the electrons

to the lower-energy B sites. As ∆ → 0, the energy gap reduces to zero and the

localization length increases, as shown in Figure 4.8. The value of zN at ∆ = 0

remains non-zero (and hence the localization length remains finite) for all practical

system sizes. It is unclear whether the touching of the valence and conduction bands

at a single point in k space is sufficient to force zN to tend to zero as the system

size tends to infinity.

It is again possible to derive a tight-binding description of this system — its

derivation is very similar to that in [146] for the graphene sheet, except that the on-

site energies of the A and B sites are allowed to differ by an amount ∆. However, in
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Figure 4.7: (a) The structure of the graphene-like model, showing the lattice vectors
a1, a2 of the primitive cell (top), the lattice vectors a′1, a′2 of the larger rectangular
cell used for simplicity (bottom), and the sites A and B on which the potential can
be varied. (b) The Brillouin zone of the graphene-like model showing the reciprocal
lattice vectors b1, b2 and the high symmetry k-points K, M and Γ. (c) The external
potential of the graphene-like model for a = 10, Vd = 3, ρ = 5, and ∆ = 0. The
dotted line encloses one rectangular unit cell.
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this situation the resulting 2D Brillouin zone integral is not analytically tractable. It

could be numerically integrated, but this would not provide any insight not already

given by the DFT simulation.
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Chapter 5

The Surface Energy of the

Electron Gas

5.1 The Jellium System and Surface

5.1.1 Introduction and Previous Investigations

We established in Chapter 2 the importance of the exchange-correlation functional

in the accurate determination of energies with density functional theory. As men-

tioned, while the behaviour of the exchange part of the functional can be derived

analytically in homogeneous systems, in inhomogeneous systems, and for the corre-

lation part even in homogeneous systems, the functional must in general be either

derived by approximations or fit to computational data from a higher level of theory

— predominantly QMC.

It is therefore a topic of importance to test and benchmark the performance of

such functionals. Historically, jellium, the homogeneous electron gas with a uniform

positive background, has been the proving ground for all new electronic structure

methods. For example, among the early uses of QMC [31] and GW [58] were such

calculations — the former forming the basis for the Perdew-Zunger parameterization

[133] of the Ceperley-Alder data for the correlation energy in the LDA functional.

The jellium slab, or quasi-2D electron gas, is the simplest useful further test that
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methods can be subjected to beyond the homogeneous system. It is the simplest

system with a surface, and thus provides a test of functionals over a wide range of

densities, as the electron density must tail away from its bulk value deep inside the

material, to zero far from the surface.

The first study of such a surface with DFT, that of Lang and Kohn [104], was

also among the first real applications of LDA. This has been followed by studies with

exchange-correlation functionals of gradually increasing sophistication [105, 131],

and studies with the Fermi Hypernetted Chain method [96, 97], and the Random

Phase Approximation (RPA) [98] and GW methods [44]. The paper by Yan [185]

in 2000 summarizes the results of a variety of calculations as of that date, and the

later paper by Staroverov [157] summarizes those as of 2004. The conclusion of tests

of a wide range of DFT functionals is that the surface energy in DFT is only lightly

dependent on the choice of exchange-correlation functional, but that designing a

local functional to incorporate the correct long- and short-ranged behaviour simul-

taneously is a difficult prospect. The DFT results fall in a relatively narrow range,

as can be seen from Table 5.1.

Applying QMC to this problem has long been an attractive prospect due to

its high level of accuracy, and, in simple systems such as this, its relative absence of

approximation. QMC should be able in principal to provide a benchmark against

which the success of other approximations can be tested. However, for reasons that

will be elaborated on in the following section, previous QMC work has been of mixed

success. The first fixed-node DMC simulations were by Li et al. [111], and their

work was expanded on by Acioli and Ceperley [1]. Both these groups studied slab

systems to which periodic boundary conditions had been applied, and used the direct

bulk vs slab comparison described in Section 5.2.2 to calculate surface energies. The

results of these QMC simulations differed so substantially from the aforementioned

DFT calculations that further investigation was required — this was provided by

Sottile and Ballone [155], who performed DMC simulations on jellium spheres, for

which the finite size effects are much less severe. Their results were much more

in line with the DFT work — especially with DFT calculations of jellium spheres
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Author and Reference σ / erg cm−2 Method

Yan et al. [185] −610 DFT-LDA
Yan et al. [185] −533 DFT-GGA + WVI∗

Perdew et al. [131] −690 DFT-GGA
Perdew et al. [131] −567 DFT-metaGGA
Kurth and Perdew [98] −533 DFT-LDA + RPA
Kurth and Perdew [98] −587 DFT-GGA + RPA
Li et al. [111] −465± 50 FN-DMC (slab vs bulk)
Acioli and Ceperley [1] −429± 80 FN-DMC slab vs RN-DMC bulk
Correction to above [135] −554± 80 FN-DMC slab vs FN-DMC bulk
Wood [178] −600± 50 VMC slab only

Table 5.1: Comparison of surface energy σ at a specific density (rs = 2.07, cor-
responding to the density of Aluminium) as calculated in a range of methods and
variations thereof.

carried out by Almeida et al [5]. This presented something of a controversy, as while

DMC was expected to be the most accurate method available, it did not appear to

be giving reliable answers in slab systems. Subsequently, Pitarke [135] pointed out

that the comparison in [1] was somewhat flawed as it compared release-node bulk

calculations with fixed-node slab calculations. Correction of this error moved the

DMC value somewhat towards the rest but the controversy remained.

Table 5.1 shows summarized results of surface energies of slab calculations at

one specific density with a range of methods, highlighting the difference between the

DMC results and all the other methods, and also the variation between various DFT

functionals and other approximations. Surface energies are, for historical reasons,

often quoted in units of erg cm−2, from which the conversion factor to the more

useful atomic units of surface energy, mHa bohr−2, is 1/1556.8928.

The work on the surface energy of jellium presented here follows on from the

work of Wood and Foulkes [178, 179, 180] which addressed the challenges faced by

DMC simulations of Jellium slabs. Wood and Foulkes extended the Model Periodic

Coulomb (MPC) interaction [177] to quasi-2D systems of this type [179] and designed

a new form of wavefunction based on the plasmon normal modes present in the bulk

and on the surface of a jellium slab [180]. However, while they were successful
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in identifying many of the sources of error in the original slab calculations, and

in formulating a new method for the determination of the surface energy itself,

their VMC-only calculations [178] were unable to obtain sufficient accuracy in total

energies fully to resolve this controversy.

In this Chapter, we present an analysis of the sources of error in slab calcu-

lations in VMC and DMC, and present a comprehensive evaluation within DMC of

the surface energy at a range of densities. In Section 5.1.2 we define the system un-

der study. In Section 5.2.1 we discuss the generation of trial wavefunctions for DMC

calculations of jellium slabs, and in Sections 5.2.2 and 5.2.3 we compare different

methods of evaluating the surface energy itself. Finally, in Section 5.2.4 we present

our results for the surface energy, and in 5.2.5 we discuss how these results can be

used to estimate the magnitude of the fixed node errors, which have to date generally

been thought of as an uncontrolled and unquantifiable approximation. Given the

difference between the DMC results of Acioli and Ceperley, who mixed release-node

DMC and fixed-node calculations, compared to the results when only fixed-node

results were used, this is an important estimate to be able to make.

5.1.2 The Jellium Slab System

The homogeneous electron gas is characterized by a single parameter rs, the radius

of a sphere of size equal to the volume occupied by one electron. This volume is

equal to the total volume over the number of electrons, which is of course the inverse

of the density n, so

n =
3

4πr3
s

⇒ rs =

(
4πn

3

)−1/3

. (5.1)

The negative charge of the electrons is neutralized with a uniform positive back-

ground of the same density n, and the total energy per electron of the electrons in

this system is defined as ǫbulk, which is a function of rs — see for example [31].

To create a jellium slab, we carry over this definition of rs in terms of the

density, but cut off the positive background at a certain width s in one spatial

direction (usually chosen as z). The background thus has the form (see also Figure
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5.2)

nb(z) =





3/(4πr3
s) −s/2 < z < s/2 ,

0 otherwise.
(5.2)

Because the density and the potential do not depend on x and y (the direc-

tions that lie in the plane of the slab), the system is homogeneous in these directions.

In a DFT calculation, the in-plane symmetry allows us to consider, effectively, an

infinite sized unit cell in those directions. This is achieved by performing the in-

plane integration with respect to kx and ky analytically, and allows the number of

electrons in the system to be infinite, negating the in-plane finite size effects exam-

ined in Section 5.2. In a QMC calculation, however, the unit cell has to be finite,

with a fixed number of electrons N occupying a square in-plane unit cell of length L

obeying periodic boundary conditions. The volume of background is thus L2s and

N = nL2s =
3L2s

4πr3
s

(5.3)

Figure 5.1 shows a typical periodic unit cell for this system.

In previous QMC calculations, it has been standard to use periodic boundary

conditions along all three axes, such that what is in fact simulated is an infinite stack

of slabs separated by w. This leads to extra finite size errors as there is cross-talk

between neighbouring slabs. Wood used the quasi-2D Ewald interaction originally

proposed by Parry, enabling this error to be escaped by studying only a single slab.

This eliminates cross-talk, but is slow and cumbersome to evaluate. Fortunately,

Wood also showed that equivalent accuracy can be obtained by replacing the quasi-

2D Ewald interaction with the quasi-2D form [179] of the Model Periodic Coulomb

(MPC) interaction [177].

It is clear that deep enough inside a sufficiently wide slab system, the local

value of the energy per electron must tend to its bulk value. In a finite slab system

with two surfaces of area A = L2 and N electrons, we can therefore define the energy
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Figure 5.1: The simulation cell for a jellium slab calculation in QMC. The slab is of
width s, enclosed in a box of width w, and is of size L×L in the plane. The density
parameter rs and the volume of slab enclosed, sL2, determine the electron number
N .

per electron in the slab in terms of that in the bulk and the surface energy σ, with

ǫslab = ǫbulk +
2Aσ

N
. (5.4)

Combining this with 5.3 gives us

ǫslab = ǫbulk +
8πr3

sσ

3s
. (5.5)

Strictly, this formula only holds in the limit of an infinitely wide slab, as for finite-

width slabs ǫslab displays oscillations as a function of slab width. Unfortunately,

however, as s → ∞, the bulk and slab values of ǫ become the same and the above

equation cannot be used to find the surface energy. These out-of-plane finite size

effects mean that surface energy calculations must be performed at a large but finite
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Figure 5.2: Electron density and background charge density along the z-direction,
for a jellium slab at rs = 2.30 Bohr and s = 24.5 Bohr. The electron density spills
out of the slab by around 3 Bohr, and displays the oscillations characteristic of the
first 5 occupied subbands.

value of s.

The electron density in a jellium slab is normally allowed to spill outside the

region of the background charge to minimize the energy. Figure 5.2 shows a typical

electron density compared to the corresponding background. It is also possible

to introduce fixed hard boundaries at the edge of the slab — in effect an infinite

potential well — so that the electrons are confined to the positive background region

inside the slab. This is usually thought of as a different problem, however, as the

behaviour of the electron density at the boundaries of the slab is very different from

that of the jellium slab. It is referred to in the literature as the Infinite Barrier

Model (see eg. [136]).
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5.2 Surface Energy Calculations

The surface energy of jellium can be broken down, just like the total energy, into

contributions from kinetic energy, external potential energy (the interaction between

the electrons and the background charge), and electron-electron potential energy.

The electron-electron energy can be further broken down, in a way that is explicit

within density functional theory but must be inferred within quantum Monte Carlo,

into a Hartree electrostatic term and an exchange-correlation term. We thus write

the total surface energy σT , with σs the kinetic term, σes the electrostatic term from

the Hartree electron-electron and background potentials, and σXC the exchange-

correlation term, as

σT = σs + σes + σXC (5.6)

One of the principal difficulties of making an accurate determination of σ in a

jellium slab is that all three of these terms are individually large but nearly cancel to

produce a relatively small surface energy. This should be no surprise, as the energy

cost of cutting off a homogeneous background and a near-homogeneous electron

gas, when the gas is allowed to spread out from the surface to minimize the energy,

would be expected to be small. Example values for the breakdown of the surface

energy into its components, taken from a DFT calculation with rs = 2.30 bohr, are

as follows:

• σT = −104.50 erg cm−2 (total surface energy)

• σs = −2801.60 erg cm−2 (kinetic energy contribution)

• σes = 650.39 erg cm−2 (electrostatic energy contribution)

• σXC = 2046.71 erg cm−2 (exchange-correlation energy contribution)

Often in the literature, given that it represents the only uncertain part of the cal-

culation, only the exchange-correlation part σXC of σT is quoted. In QMC, there

is no easy way to separate out the terms, as to disentangle the Hartree and XC
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contributions to the electron-electron interaction energy would require knowledge

of the ground state density. Since the density operator does not commute with

the Hamiltonian, only relatively inaccurate mixed estimator of its expectation value

could be obtained. Moreover, since the ground state is anyway not an eigenstate of

the electron-electron potential energy operator, the variance is high and the error

bars large. We therefore stick, in this work, to quoting the full surface energy σT .

In the following subsections we discuss how to model the Jellium slab in DFT

and QMC, and then how to extract the surface energy from these simulations in an

accurate way.

5.2.1 Wavefunctions for Jellium Slabs in Quantum Monte

Carlo

As ever, to perform accurate calculations in quantum Monte Carlo, we require accu-

rate trial wavefunctions. In these calculations, we choose to build our wavefunctions

on single particle orbitals from density functional theory. Because of the homogene-

ity in x and y, the DFT single-particle orbitals have the simple form

φnk||
(x, y, z) = un(z) eik||.r|| (5.7)

where n is the index of the subband in the out-of-plane direction, k|| is the in-plane

k-vector, and r|| = (x, y, 0) is the in-plane position. The density is uniform in x, y

and is easy to calculate from the orbitals, as

ne(z) =

nb∑

n

ωn|un(z)|2 (5.8)

where ωn is a weight factor specifying the occupation of subband n. An example of

the orbitals of a slab with five occupied subbands (nb = 5) at rs = 2.30 is shown

in Figure 5.3. The filling of these subbands is responsible for the finite size effects

discussed in the next section.
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Figure 5.3: Orbitals of the 5 occupied subbands for the same slab as Figure 5.2
(rs = 2.30, s = 24.5). Each subband is in a different colour and the axes of each
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∑
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The DFT simulations are carried out with a code supplied by Pablo Garcia-

Gonzalez [57], which uses a grid in the z-direction extending outside the slab for

some distance, giving a total cell size of w in the z-direction. In the xy-plane, the

cell can be either of length L or infinite. Convergence with respect to parameters

such as the grid spacing and cell width w is detailed in the work of Wood [178]. To

perform the GGA calculations, the ability to use the PBE functional was added to

this code by this author.

The QMC calculations use these DFT orbitals in a Slater determinant D and

combine them with a Jastrow factor J to produce the many-electron wavefunction

Ψ(X), where X = {(ri, σi)}:

Ψ(X) = eJ(X)D↑(R↑)D↓(R↓) . (5.9)

An immediate difficulty is encountered when attempting to optimize the pa-
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rameters in the Jastrow factors of these trial wavefunctions by applying variance

minimization. If the standard power series expansion in electron-electron distances

is used for the Jastrow, then the variance minimization, at least in the traditional

scheme, fails spectacularly, for reasons documented previously [178]. The very re-

cent scheme of Drummond and Needs [41] may meet with more success but was not

available at the time of these calculations.

A possible solution to this optimization problem [180] involved deriving the

form of the bulk and surface plasmons in the slab and basing the long-ranged part of

the Jastrow factor on the behaviour of the plasmon normal modes [178]. While the

approach successfully provided a theoretical description of the plasmons, attempts to

use it as a basis for the long-ranged part of the Jastrow were unsuccessful. However,

it did point the way to a usable form of short-range cusp term in the Jastrow and

confirmed that the method of Malatesta et al. [114] could be used to ensure that

the one-body terms χ(r) undo the unwanted spreading effect on the density of the

two-body u(r12) terms.

In this work, we use a Jastrow factor of the form

J(X) = −1

2

∑

i6=j

ucusp(xi,xj) +
∑

i

χ(ri) , (5.10)

where

ucusp(xi,xj) =
α

2(1 + δσiσj
)
e−rij/α−r2

ij/L2
c , (5.11)

and χ takes the Malatesta [114] form,

χ(ri) =

∫

V

ucusp(ri, r
′)n(z′) d3r′ , (5.12)

where rij is the separation of electrons i and j, n(z) is the slab electron density

along the z axis, and Lc and α are the only unknown parameters. The prefactor to

the exponential ensures the cusp conditions as rij → 0 are obeyed.

We fix Lc by using it to ensure that there is no unwanted cusp in u at the cell

boundaries. Any such cusp would produce a contribution to the kinetic energy of

109



CHAPTER 5. THE SURFACE ENERGY OF THE ELECTRON GAS

-0.0005

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 1.6  1.8  2  2.2  2.4  2.6

T
ot

al
 e

ne
rg

y 
E

(α
) 

(a
u)

α

Total Energy
a*x**2+b*x+c

p*x**4+q*x**3+r*x**2+s*x+t

Figure 5.4: Optimization of Jastrow parameter α. Total energies for a range of
values of α are calculated in VMC and a quartic fit to the curve is used to find the
minimum where ∂E/∂α = 0.

the wavefunction that would be δ-function like, so would not be sampled in a QMC

simulation. To ensure the cusp contributes negligibly, we require that as rij → L,

the u term has decayed to nearly zero, and thus fix Lc at a constant fraction of the

cell size L. This leaves α as the only optimizable parameter, controlling the range

of the short range correlation.

Because of the failure of variance minimization, the only practical way to

optimize α is to do it “by-hand”. Figure 5.4 shows how this is performed: the u

terms and corresponding χ terms for a series of values of α are generated accord-

ing to Eqs. 5.11 and 5.12, and a minimal VMC run is performed for each. By

fitting a quadratic or quartic function (the quartic usually provided a more accurate

minimum) to the plot of EV MC(α), a minimum could be calculated from the fit

parameters. This value of α was then used in the main VMC and DMC runs.

The value of α was independently optimized for each simulation, as the op-

timal value depends on L, s and rs. The effect of squashing the correlation hole
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into the cell with the r2
ij/L

2
c cutoff leads to a strong 1/L2 dependence of the VMC

energy, which will be seen in the graphs in Section 5.2.4.

5.2.2 Bulk vs Slab Comparison

Given the form of 5.4, the most obvious method to extract a surface energy from

slab and bulk energies would appear to be to rearrange for σ as follows:

σ =
(ǫslab − ǫbulk)N

2A
= (ǫslab − ǫbulk)

3s

8πr3
s

(5.13)

When using DFT it is easy to compare the bulk energies per electron with the

slab energies per electron to obtain surface energy curves as a function of density

parameter rs. These are shown in Figure 5.5 for two very commonly used density

functionals, the Perdew-Wang (PW) parameterization [132] of the Local Density Ap-

proximation (LDA) and the Perdew-Burke-Ernzerhof (PBE) parameterization [129]

of the Generalized Gradient Approximation (GGA). However, the major disadvan-

tage of attempting to use the same approach with QMC calculations can be seen as

soon as we consider the errors involved if the energies per electron are inaccurate in

any non-systematic way.

The simplest error to deal with is the statistical error that affects every DMC

estimate of an energy per electron ǫ. Even if there were negligible error in the bulk

energy (which is feasible as good wavefunctions are much more easily obtained in

the bulk), using Eq. 5.13 to calculate σ would give an error ∆σ on the surface energy

of

∆σ =
3s

8πr3
s

∆ǫslab (5.14)

where ∆ǫslab is the error on the estimate of the energy per electron in the slab. To

demonstrate the accuracy required, an estimate can be made based on the corre-

sponding DFT values. At rs = 2.07 and with s = 18.4, the surface energy is of order

σ = −690erg cm−2 and the energy per electron is ǫslab = −9.31mHa. If we decide we

need an accuracy of 10% on σ, then we require an error of less than ∆ǫslab = 0.2mHa,
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Figure 5.5: Surface energy σ(rs) against density parameter rs in the range rs = 2
to rs = 5, calculated by comparing ǫbulk against ǫslab for slabs of width s = 8.93rs

(chosen to minimize finite size fluctuations — see below). The surface energy with
the LDA functional (red) is consistently marginally higher than the surface energy
with the GGA functional (green) but otherwise agreement is good. Note that as
rs → 0, σ(rs)→ −∞, and as rs →∞, σ(rs)→ 0.

which is already challenging. In principle, the stochastic error can be reduced to

as low a level as required by increasing run times, but the slow decay of the errors

(1/
√
M with run length M) makes this unfeasible beyond a certain point if the trial

wavefunction is poor.

Much more serious, however, are the unknown contributions of systematic

errors. Pitarke and Eguiluz [136] demonstrated that the filling of subbands in the z

direction causes an oscillation in σ with a wavelength of λF/2 where λF is the Fermi

wavelength, related to the density parameter by

λF

2
=

1

2
× 2πrs

(
4

9π

)1/3

≃ 1.63696rs . (5.15)

Figure 5.6 shows these out-of-plane finite size effects: at rs = 2.07 the wavelength of
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the oscillations is λ = 1.62rs and at rs = 3.94 it is λ = 1.63rs so the above model is

well-obeyed in this density range. Pitarke and Eguiluz’s analysis was for the infinite

barrier model so exact correspondence is unlikely.

The surface energy σ(s) is thus an oscillatory function of s for finite slabs,

but at large s it tends to a well-defined limit, σ(s → ∞). By analyzing the form

of σ(s) in DFT, it is possible to pick ‘special’ slab widths for which the calculated

surface energy matches its infinite s limit. By examining the occupations of the

subbands in each case, it can be seen that the special slab widths all have similar

occupation patterns, with each successive special width adding electrons to a new,

previously unoccupied subband. For example, s1, s2 and s3 might correspond to

the occupation of the n = 1, 2, 3, 4, n = 1, 2, 3, 4, 5 and n = 1, 2, 3, 4, 5, 6 subbands

respectively. Figure 5.7 demonstrates the procedure of choosing these widths for

rs = 2.07, where this is the case. This DFT-based method for finding the special

slab widths is expected to carry over accurately into QMC because it results from

a subband-filling effect which is a property of the trial wavefunction, not a direct

result of the way the energy calculations themselves are performed. This should

eliminate any bias from the choice of values of s — a problem not addressed at all

in previous QMC calculations of surface energy.

As already mentioned, in a DFT calculation we can perform the integration

over the in-plane k|| vectors analytically, in effect taking the in-plane size L to

infinity. In QMC, we are restricted to finite N we thus require finite L. We therefore

introduce a second source of finite-size error, due to kinetic energy quantization from

the finite set of allowed k|| vectors. The simplest method for ameliorating this in-

plane error is to use arbitrary values of L and apply a standard correction based on

the DFT finite size error, of the form:

ǫQMC
slab (∞) = ǫQMC

slab (L) +
(
ǫDFT
slab (∞)− ǫDFT

slab (L)
)
, (5.16)

but it was found that using a similar procedure to the above, picking ‘special’ values

of L where the in-plane error is near zero anyway, gives marginally better conver-
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Figure 5.6: Breakdown of the DFT surface into its constituent parts for (a) rs = 2.07
(b) rs = 3.94. The total surface energy σT is the sum of the electrostatic, exchange-
correlation and kinetic terms, σes, σXC and σs respectively. Out-of-plane finite size
effects cause each term to oscillate with s as shells are filled, with cusps at points
where new shells are occupied for the first time. The cusps cancel in σT to produce
a smooth function of s. Note the differing scales — the oscillations become more
severe at high density (low rs). The value on the x-axis is s/rs, so the fact that the
wavelength looks the same for both rs values (and all others tested) demonstrates
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114



CHAPTER 5. THE SURFACE ENERGY OF THE ELECTRON GAS

-680

-660

-640

-620

-600

-580

-560

-540

 0  5  10  15  20

σ T
 (

er
g/

cm
2 )

s / rs

s1 s2 s3

Figure 5.7: Choices of special slab width s1, s2, s3 for rs = 2.07. Values are picked
such that the DFT surface energy at the special point matches that obtained in the
infinite slab width limit.

gence. In practice we used a specific set of around 4-5 different values of N and thus

L for each slab width.

The form of the in-plane finite size errors is shown in Figure 5.8. Their

behaviour is unpredictable and non-trivial as they depend on the filling of stars of

k|| vectors of equal magnitude. In general they are much more severe at high density,

as can be seen from the magnitude of the energy fluctuations relative to the total

energies in Figure 5.8(a) compared to 5.8(b).

The final major source of error in DMC calculations is the fixed node er-

ror discussed in Section 3.3.4. The trial wavefunction specifies the nodal surface,

which determines the fixed node ground state energy EFN
0 within the fixed node

approximation. How close this is to the true ground state energy E0 depends on the

accuracy of the nodal surface, which is extremely hard to quantify. Techniques such

as backflow (see Section 3.2.4) are capable of improving the nodal surface but may

yield very different levels of accuracy in different systems. In this case, homoge-

neous backflow in the bulk is much easier to describe, and thus more likely to lower

the DMC energy, than the inhomogeneous backflow in the slab system. Even when

backflow is not used, as in this work, the quality of the nodal surface in the much

simpler bulk system is likely to be higher than that in the slab. When comparing
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Figure 5.8: The total energy per electron in the slab ǫslab in DFT as a function of
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and blue) are the special slab widths chosen as in Figure 5.7.

“like with like”, such as in the defect formation energy calculations in the next chap-

ter, or binding energy calculations in molecules, it is reasonable to assume, because

of the similarity of the systems being compared, that the fixed-node error cancels

to a high degree. Here, however, there is less reason to expect good cancellation

between the slab and the bulk as they are described in very different ways. Indeed,

Pitarke’s improvement on Acioli’s analysis, by removing the unreliable comparison

of release-node bulk results with fixed-node slab results (see Table 5.1), shows how

large a difference the fixed node error can make.
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5.2.3 Slab-only Comparison

In light of all of the concerns presented above, we would like to formulate a method

that can do away with the bulk calculation entirely and compare only like with like,

using only slab results. We do this by returning to Eq. 5.5:

ǫslab = ǫbulk +
8πr3

sσ

3s
(5.17)

and noting that it is of the form y = b + cx, where x = 1/s, and that we need not

know the slope b to find the intercept c if we have calculations of ǫslab(1/s) at a

range of values of 1/s.

Taking into account the conclusions of the error analysis of the previous

section, we adopt a scheme which minimizes all the identifiable sources of error in

QMC calculations of surface energies [181]. This method can be summarized as

follows:

1. Infinite-cell DFT calculations are performed, using the LDA and the PBE

parameterization of the GGA, for a range of slab widths, as shown in Figure

5.6.

2. Three special slab widths are then chosen — consecutive values of s for which,

within the infinite-cell LDA calculations, σ(s) = lims′→∞ σ(s′).

3. For each special slab width, DFT and QMC simulations are performed for a

set of values of in-plane size L to obtain values of slab energy per electron ǫslab.

Values of L are chosen such that the energy per electron for the finite cell, as

calculated in the LDA, closely matches its infinite-cell value; this reduces the

in-plane finite-size errors.

4. A graph of ǫslab against s/N , which is proportional to 1/L2, is plotted for

each special slab width. If the L-dependent finite-size errors in QMC are

proportional to 1/L2, then three straight lines will be obtained; ǫslab(1/L
2)

can then be extrapolated to the infinite-L limit.
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5. The extrapolated values of ǫslab are plotted against 1/s. If Eq. 5.5 holds, this

will generate a straight line, the gradient of which gives the surface energy.

The advantages of using this procedure are convincing: we sidestep the problems

caused by the different fixed-node errors and wavefunction quality in bulk and slab

calculations by only using the slab results; we obtain slab energies converged with

slab width s and electron number N ; and we can combine the results of a large

number of independent simulations to produce a more accurate surface energy with a

well-defined error, rather than produce a different surface energy for each simulation,

with unknown error bars.

This latter point relies on an analysis of the errors accompanying the linear

fits in steps (4) and (5) above. In both cases we are fitting something of the form

y = a+ bx, from quantities xi, yi where each yi is accompanied by known statistical

error of variance σ2
i , and we require the statistical variance of the fitted parameters

a and b. The procedure for analyzing these errors is well known (see eg [138]), and

gives:

a =
SxxSy − SxSxy

SSxx − (Sx)2
; b =

SSxy − SxSy

SSxx − (Sx)2
(5.18)

σ2
a =

Sxx

SSxx − (Sx)2
; σ2

b =
S

SSxx − (Sx)2
(5.19)

where S =
∑

i
1
σ2

i

, Sx =
∑

i
xi

σ2

i

, Sy =
∑

i
yi

σ2

i

, Sxx =
∑

i
x2

i

σ2

i

, Sxy =
∑

i
xiyi

σ2

i

. The

assumption underlying this treatment is that all deviation from the optimal fitted

line is stochastic in nature. This assumption is not strictly obeyed in this case, but

as there is no predictable form to the remaining finite size effects, this should not

present a particular problem.

Eqs. 5.18 and 5.19 are used to generate the values and error bar respectively

of ǫslab(
1

L2 → 0) for each s, and thus errors on each of the points of ∆ǫslab(
1
s
) which

go into calculating the gradient. The error on the fit to these points, again using

these formulae, then gives the error in the total energy.
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Figure 5.9: The energy per electron ǫslab calculated using VMC (top) and DMC
(bottom) as a function of s/N ∝ 1/L2. The points have been chosen for their
minimal in-plane finite size effects. Remaining finite-size effects are then corrected
with DFT-derived finite size corrections. The remaining finite size effects are specific
to QMC and are caused by the inadequacy of the long-range correlation included in
our form of Jastrow in VMC, and residual kinetic energy finite size effects in DMC.

5.2.4 Results and Analysis

The results of the applying the method detailed above to calculate surface energies

in VMC and DMC are shown in Figures 5.9, 5.10 and 5.11. Random Phase Ap-

proximation (RPA) and RPA+ results are also shown, courtesy of Garćıa-González

[181]. The RPA+ combines the RPA with a correction to account for the short-range

electron-electron correlation [98]; the correction used here is derived from the LDA.

To enable accurate comparisons to be made between methods, table 5.2 shows

the data used to obtain Figure 5.11. Our new DMC results are consistent with

results obtained using DFT in the LDA and using the RPA. They do not agree
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Figure 5.10: Change in the energy per electron ǫslab (extrapolated to infinite in-plane
cell-size) as a function of inverse slab width 1/s for two densities: (a) rs = 2.07; (b)
rs = 3.94. Because ǫslab = ǫbulk +8πr3

sσ/3s, the gradient of ǫslab(1/s) gives us σ. The
gradients are shown for four methods: RPA and RPA+ (blue and red, respectively),
and VMC and DMC (green and purple respectively). In the latter two cases, the
straight line is a linear fit to the points, which come with stochastic error bars.

with our GGA, RPA, or VMC values or previous calculations of the same. This

contributes to the body of evidence suggesting that the GGA is inadequate for

surfaces. The column labelled RPAc demonstrates the effectiveness of our method

of selecting three slab widths for each density by applying it to RPA: we compare the

RPA results obtained this way with the corresponding fully-converged RPA values

including simulations of wider slabs, which are impractical in QMC. The agreement

between the RPA and RPAc values indicates that the method is accurate to within
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Sodium. The lines are a guide to the eye.

the error bars introduced by QMC.

Also included in the table are DMC results based on GGA orbitals rather

than LDA orbitals; these help to demonstrate that the result obtained was not

solely a function of the nodal surface used. If DMC results based on GGA orbitals

had followed the trend of the GGA, the above argument that the GGA is poor for

surfaces would be rendered unconvincing. This does not appear to be the case,

although the error bars make it hard to draw a firm conclusion.

Several comparisons of the jellium surface energy obtained by different meth-

ods exist in the literature [185, 157, 99], and they agree on the general trend followed

by the results. This trend is that, over a wide range of densities, the following holds

true:

σGGA > σLDA > σmGGA > σRPA+ > σRPA (5.20)
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rs (bohr) LDA GGA VMCLDA DMCLDA DMCGGA RPA+ RPA RPAc

2.07 −608.2 −690.6 −637± 50 −563± 45 −564 −517 −506

2.30 −104.0 −164.1 −131± 40 −82± 27 −71 −34 −25

2.66 170.6 133.0 200± 11 179± 13 158± 26 191 216 225

3.25 221.0 201.2 252± 14 216± 8 233 248 253

3.94 168.4 158.1 188± 3 175± 8 169± 9 173 182 187

Table 5.2: Table of surface energy σ at a range of density parameters rs correspond-
ing to various metals as in Figure 5.11, with a range of different methods. All surface
energies in erg cm−2.

where mGGA stands for meta-GGA. Our DMC results lie towards the middle of

this range, consistent with the LDA, mGGA, and RPA values, closer to the RPA

values for high densities and to the LDA values for low densities.

The controversy that led to the need for this research is thus resolved, and

DMC just about retains its place as in principle the most accurate available method

for such calculations. Although DMC calculations are plagued by systematic errors,

they can all be eliminated if sufficient care is taken with the method.

5.2.5 Estimation of Fixed Node Errors

Considering the difference between ǫslab(rs) and ǫbulk(rs) gives us a rare opportunity

to estimate the size of the fixed node error. Additionally, we can evaluate how large

an error is made if the original bulk vs slab comparison used in previous calculations

is employed.

To provide bulk energies for comparison, fixed-node DMC simulations were

carried out on bulk jellium. Fully optimizable Jastrow factors were included to

reduce the variance, but the nodal surface was simply that of a Slater determinant

of plane waves. Both FCC cubic and simple cubic (SC) unit cells containing a range

of numbers of electrons between N = 120 and N = 650, all corresponding to filled

stars of k-points, were simulated. After the single-particle finite size corrections have

been applied, the results lie close to a straight line in 1/N . Although the fcc and sc

cells followed slightly different trends, the plot of ǫbulk(1/N) could be extrapolated

fairly accurately to the infinite N limit. Figure 5.12 shows ǫbulk(1/N) for rs = 2.07.

122



CHAPTER 5. THE SURFACE ENERGY OF THE ELECTRON GAS

-77.1

-77.05

-77

-76.95

-76.9

-76.85

-76.8

-76.75

-76.7

-76.65

 0  0.001  0.002  0.003  0.004  0.005  0.006  0.007  0.008  0.009

ε b
ul

k 
(m

H
a)

1/N
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Results for all the densities are shown in Table 5.3.

Also in Table 5.3 are the surface energies by the bulk vs slab comparison

method. While the errors are large, they clearly deviate both from each other

(indicating a strong slab width bias) and from the slab-only, extrapolated value

(indicating a strong fixed node error). Our slab-only method corrects both these

errors.

These bulk energies per electron can then be compared with the values of

ǫbulk obtained by extrapolating ǫslab(1/s) to infinite width. Table 5.4 shows the bulk

and extrapolated slab energies, and the difference between the two methods, inferred

from the difference between the two values of ǫbulk, which presumably results from the

difference in absolute fixed node error. Figure 5.13 shows ∆EFN as a function of rs

— there is no clear trend but the error appears to be getting larger at lower densities,

although it decreases as a fraction of the total energy per electron. Nowhere in the

range is it large enough to suggest that the fixed node error on the slab-only results

is large enough to invalidate the surface energies calculated in this work.
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rs (bohr) εbulk (mHa) σ(s1) σ(s2) σ(s3) Extrap. σ

2.07 −6.48± 0.14 −536± 42 −516± 46 −524± 56 −563± 45
2.30 −31.39± 0.15 −52± 31 −50± 39 −33± 49 −82± 27
2.66 −54.63± 0.13 224± 15 243± 21 256± 26 179± 13
3.25 −71.34± 0.07 254± 6 267± 8 284± 11 216± 8
3.94 −76.75± 0.06 194± 5 200± 4 208± 9 175± 8

Table 5.3: Bulk energies per electron at a range of densities, and surface energies
calculated at each of the special slab widths by comparing energies per electron
in the bulk and the slab, compared to the surface energies from the extrapolation
method of Section 5.2.3. The dependence on s of the former surface energies shows
a finite size bias, which should be absent in our method if large enough values
of s are considered. The difference between bulk vs slab and slab only results
demonstrates that there must be a considerable fixed node error, which should at
least be minimized with our method as the quality of the nodal surface should be
roughly constant at different slab widths. All surface energies in erg cm−2.

rs (bohr) ǫbulk(bulk calculation) ǫbulk(slab extrapolation) ∆EFN

2.07 -6.48(14) -6.36(16) 0.12(21)
2.30 -31.39(15) -31.25(11) 0.14(19)
2.66 -54.63(13) -54.23(10) 0.40(16)
3.25 -71.34(07) -70.84(09) 0.50(11)
3.94 -76.75(06) -76.4(14) 0.35(15)

Table 5.4: Comparison of bulk energies per electron obtained from bulk calculations,
with those obtained by extrapolating ǫslab(1/s) to infinite s. The statistical errors
on the bulk calculations and extrapolation errors on the slab calculations are shown
in brackets. The difference gives an estimate of the difference in fixed node error
between the two methods. All energies are in mHa.

5.2.6 Remaining DMC Finite Size Errors

The DMC energy per electron results in Figure 5.9, while correcting most of the

strong 1/L2 error in the VMC results, nevertheless show a remaining finite size

effect, which has not so far been explained. Examining the DMC plots in Figure

5.9, it appears that while as a function of 1/L2 each individual line is straight and

can be well approximated by a linear fit, the gradients are not the same for each

value of s as would be expected for a purely surface-based error. Since each line

corresponds to a fixed s value, a change in slope of that line represents an additional

error proportional to 1/L2, and at fixed s, 1/L2 ∝ 1/N . It thus appears that the
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Figure 5.13: Fixed Node error ∆EFS as a function of density parameter rs. No
clear trend is observed but as a fraction of the total energy the fixed node error falls
rapidly with decreasing density.

remaining finite size errors in the DMC simulation are a function of 1/N .

Recent work by Chiesa [33] has shed light on the form of the remaining finite

size errors in both the kinetic energy (∆TN ) and the potential energy (∆VN) in DMC

calculations, once the independent particles finite size error has been accounted for

by twist-averaging. The important result of this paper is that a finite sized system

inevitably neglects a sometimes significant contribution to the kinetic energy from

the long-ranged part of the Jastrow factor, which they derive in the homogeneous

electron gas as:

∆TN =
ωp

4N
(5.21)

Appendix A gives a derivation of the Chiesa argument for the form of ∆TN

and expands upon it with a more involved corresponding treatment of inhomoge-

neous systems with long range Jastrows that, as in the case of the plasmon normal

modes of a slab, are not simply a function of electron-electron separation. We then
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show how the plasmon normal mode formulae derived by Wood [180] can be used to

treat the inhomogeneous jellium slab in a similar way to the HEG. The end result

is a term which, while not easily directly calculable due to its dependence on terms

such as ρ(−Gz, Gz), has the same 1/N dependence as the above, and thus goes some

way to explaining the remaining finite size effects. Further work could perhaps be

undertaken to correct this error analytically, but given that the procedure of fitting

lines to ǫslab(1/N) appears reliable and can be justified theoretically, it would be of

limited practical value.
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Chapter 6

Point Defects in Alumina

This chapter addresses the calculation of the formation energies of point defects

in metal oxides, specifically alumina. Point defect energetics and properties are a

topic with a very wide range of applications to fields as diverse as materials science,

engineering, chemistry, electronics and more, and to which a great deal of effort in

electronic structure theory has been applied in recent decades. There remain, how-

ever, many open questions and questionable methods are commonly used without

adequate testing. As has already been discussed, quantum Monte Carlo is becoming

acknowledged as one of the most accurate methods available for the determination

of energies of solid systems, yet there have been few applications to date of this

topic to point defects. Among the exceptions is work by Leung et al. [110], Hood

et al. [76], Alfè et al. [4] and Batista et al. [15] which showed intriguing differences

between defect formation energies obtained in quantum Monte Carlo and those from

density functional theory.

Point defects are any irregularity in the structure of a crystalline solid that

is not extended in space in any dimension. Possible point defects include include:

vacancies — sites that are normally occupied but which become unoccupied; inter-

stitials — sites that are normally vacant but which become occupied by an atom,

either of one of the components of the host crystal (a self-interstitial) or of an im-

purity species; and substitutionals — where an impurity species replaces an atom
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of the host. A raft of more subtle combinations of the above are also possible.

Point defects are interesting because they are capable of very strongly in-

fluencing the material properties. Optical properties are strongly affected by the

presence of free charges, for example at anion vacancies, where the charge previously

on the anion often remains on the site to leave the crystal locally neutral. Catalysis

often relies on surface defects as the active site where reactions occur. Electrical

properties are often wholly or in part dependent on the presence of defects, which

are responsible, for example, for the presence of free electrons or holes in semi-

conductors. Finally, mechanical properties often strongly depend on the changes

in elasticity, ductility, brittleness and so on caused by the presence or absence of

defects.

Alumina is an interesting material for a variety of reasons, and makes an ex-

cellent test case for a new method because it has a number of challenging features.

Its bonding is part way between ionic and covalent, with the formal charge state of

Al3+ and O2− being misleading as to the level of ionicity. It has a complex, distorted

structure due to its coordination, which will be described in more detail in Section

6.2.1. It has anisotropy in both its dielectric tensor and its elasticity, rendering ana-

lytic corrections to long range electrostatic and elastic forces potentially challenging.

It has a very wide spectrum of possible properties, which can be strongly affected

by doping and thus by the point defects it contains. Finally, while alumina has a

wide range of industrial uses [38], and has been much studied both theoretically and

experimentally, there remain a number of open questions about the origins of its

properties, relating to point defects. For example, many aspects of the diffusion of

oxygen through the lattice remain unexplained [70], even down to the identity of

the dominant diffusing defect species in many situations. Defect complexes such as

AlO have been proposed recently [37] but calculations have proved inconclusive.

A number of previous attempts have been made to apply electronic structure

methods to defects in Al2O3 [119, 80, 23]. The results of empirical pair-potential

models [66, 102] vary wildly according to the potential used [28], principally because

of the mixed ionic-covalent bonding, the complexity and low symmetry of the crystal
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structure, and the major changes in nearest-neighbour coordination on creation of

defects. Interestingly, ab initio methods have scarcely fared better. For example,

the DFT formation energy of a neutral Oxygen vacancy has been variously quoted

as 12.92 eV [80], 10.14 eV [23], 5.83 eV [184], 7.08 eV [158] and 13.3 eV [119]. Similar

variation was seen in the geometries accompanying these energies, with the relax-

ation of the nearest neighbour Al ions away from the defect ranging from 0.4% to

12%.

Some of this uncertainty can be attributed to the different possible definitions

of what is meant by a formation energy of a defect. We will address this question in

Section 6.1. Even when the definition is established, however, there are a number of

approximations that can be made for the chemical potentials of the species involved

— we discuss our approach to this problem in Section 6.1.4. Section 6.2 describes

the results of our DFT calculations of formation energies of point defects in alumina,

which we believe make several substantial improvements over previous calculations.

One critical uncertainty we hope to address with QMC is the issue of band gap

corrections discussed in Section 6.2.4. Section 6.3 discusses DMC calculations of

formation energies in charged vacancies — a first for QMC.

6.1 Thermodynamics of Defect Formation Ener-

gies

The formation energy of an isolated point defect is not a trivial quantity to define

precisely, due to a number of theoretical and practical issues relating to the methods

used. In recent years, one particular method, that of Zhang and Northrup [186] has

become widely accepted as applicable. A summary of the use of the method, fo-

cussing on semiconductors but of wider relevance, can be found in [171]. In essence,

the formalism involves treating a particular sample of the system (usually a supercell

of many primitive cells, one of which contains the defect) as if it formed in equilib-

rium with reservoirs of each of its constituent atomic species at chemical potentials
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equal to those the perfect crystal, and a reservoir of electrons at the chemical poten-

tial of the top of the valence band. Defect formation energies are then the difference

between the formation energy of the supercell containing the defect and the same

supercell containing perfect crystal. This method has found extensive use and has

generally been found to agree well with experimental defect formation energies in

cases where these are available.

In this section we first derive the Law of Mass Action to demonstrate the

usefulness of the formation energy, and then discuss various method-independent

aspects of defect formation energy calculations.

6.1.1 The Law of Mass Action and Defect Concentrations

Equilibrium under constant temperature and pressure is defined as the state in which

the system has the minimum possible value of the Gibbs Free Energy G. Because

these are the conditions under which comparatively slow reactions occur, G is the

most appropriate thermodynamic potential for most chemistry and crystal growth.

It can be written

G = H − TS , (6.1)

where in a crystalline solid, H is the enthalpy, primarily from chemical bonding, T is

the temperature of the system and the entropy S is composed of two contributions

S = Sv + Sc, vibrational and configurational entropy respectively. The latter term

is simply Sc = k lnW where k is Boltzmann’s constant and W is the number of

possible distinguishable configurations of the system. For a perfect crystal W = 1

and so Sc = 0.

The number of ways of arranging n vacancies in a crystal of N0 atoms is the

number of ways of arranging n items at N0 + n sites, so

P =
(N0 + n)!

N0!n!
. (6.2)

The change in G from creating n defects of formation energy h and vibrational
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entropy sv per defect is therefore

∆G = nh− nTsv − kT ln
(N0 + n)!

N0!n!
. (6.3)

This is minimized when d∆G
dn

= 0, so the equilibrium number of defects will be given

by

h− Tsv − kT
d

dn
ln

(N0 + n)!

N0!n!
= 0 . (6.4)

Using Stirling’s approximation, lnn! ≃ n lnn− n, for large n, this becomes

h− Tsv − kT ln

(
N0 + n

n

)
= 0 , (6.5)

which gives us the familiar expression for the Law of Mass Action:

N0 + n

n
≃ esv/ke−h/kT . (6.6)

Because the entropic term sv is relatively unimportant and does not vary much

between defect types, it is usually safely neglected — although this is not always

valid.

The dominant term in the mass-action formula, exp(−∆H/kT ) varies by

many orders of magnitude between different species of defect (see eg [154]), imply-

ing that is is in general sufficient to consider only one dominant type of disorder.

In highly ionic compounds such as Alumina, types of disorder which exchange an-

ions and cations are energetically unfavourable because of the large electrostatic

repulsion, so the principal forms of disorder are those which remove an ion from an

occupied site and move it to an otherwise unoccupied position within the lattice,

known as anion and cation Frenkel disorder, or remove charge-neutral combinations

of ions leaving vacancies, known as Schottky disorder.
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6.1.2 Defect Species and Notation

The standardized system of notation for denoting defect types is that of Kröger

and Vink [95]. This system uses a main symbol to define the defect species itself,

a subscript to define the site the defect occupies, and a superscript to define the

charge state of the defect. If the defect is a vacancy, the main symbol is a V. If the

defect occupies an interstitial site, the subscript is I. Otherwise, the subscript is the

symbol of the element the defect replaces. In the superscript, dashes (′) represent

negative charge relative to the same site in a perfect crystal, and dots (·) denote

positive charge relative to the same site in a perfect crystal.

Some examples in the case of Alumina include: a doubly-charged oxygen

vacancy, V··O; an Al3+ ion interstitial at an otherwise unoccupied interstitial site,

Al···I ; a missing Al3+ ion, V
′′′

Al, and an O2− ion interstitial, O
′′

I . Dots and dashes are

often replaced with numbers: V··O could equally be written V+2
O .

In the case of divacancies or other more complex multiple defects, the charge

state of a set of defects can be denoted by bracketting them and stating the charge

state of the complex. The Al-O divacancy with overall charge -1 relative to the

perfect crystal is then (V··O,V
′′′

Al)
′
.

Finally, defect reactions can be written in terms of these defect notation

symbols. For example, the formation of a cation Frenkel defect in Alumina could

be written:

AlAl + VI ⇌ Al···I + V
′′′

Al , (6.7)

or, to simplify this by omitting the normal components of the perfect crystal:

nil ⇌ Al···I + V
′′′

Al . (6.8)

6.1.3 Zhang-Northrup Formula for Formation Energies

There are a number of different ways of defining a formation energy: fundamentally,

the formation energy is the energy difference between a volume of the crystal with
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the defect and without, but if one wishes to use the formation energy to predict

equilibrium concentrations under particular formation conditions, a certain level of

care is required to make sure the definition agrees with that required as input to

the Law of Mass Action. The Zhang-Northrup method compares the free energy

of a supercell containing the defect and sufficient surrounding bulk crystal to the

sum of the chemical potentials (effectively the Gibbs free energies per particle) of all

the component atoms that would have made up a corresponding sample of perfect

crystal.

We imagine a supercell which, if it was full of perfect bulk crystal would

contain ni atoms of each species i, connected to a large reservoir of atoms at chemical

potential µi for each species, and a reservoir of electrons at chemical potential µe.

To form the defect, we remove or add ∆ni atoms of each species and charge q, and

produce something with a total energy of Edef,q
T . The change in Hf to form this

defect from its constituents can thus be written

∆Hf = Edef,q
T −

∑

i

(ni + ∆ni)µi + qµe ,

where we have neglected the vibrational contribution to the entropy in the solid

phase. Since q is the actual charge (including the sign), its contribution is +qµe

because the electron has charge −1.

Because the energy of the same supercell of perfect crystal would have been

Eperf
T =

∑

i

niµi ,

the formation energy can be written as

∆Hf = Edef,q
T − Eperf

T −
∑

i

∆niµi + qµe .

For the specific case of alumina, we can write
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∆Hf = Edef,q
T − Eperf

T −∆nAlµAl −∆nOµO + qµe , (6.9)

where µAl and µO are the chemical potentials of Al and O atoms in the perfect

crystal, and µe is the chemical potential of an electron in bulk alumina. Following

[103, 56], µe is chosen as µe = Edef
V BM + ǫF where Edef

V BM is the position of the valence

band in the defect cell and ǫF is the position of the Fermi level relative to this.

For formation energies of charged states, there may be a different constant

background potential Edef
V BM in the defect cell from Eperf

V BM in the perfect cell, because

of the influence of the defects of neighbouring cells. One way to correct for this would

be to write Edef
V BM as Edef

V BM = Eperf
V BM + ∆V where, following [137, 118], ∆V can

be determined by comparing the average potentials between the perfect and defect

crystals in a region of the supercell far from the defect. We can thus write the

formation energy as

∆Hf = Edef,q
T − Eperf

T −∆nAlµAl −∆nOµO

+q(Eperf
V BM + ∆V + ǫF ) .

However, the the ∆V correction is not necessarily the best way to correct for defect-

defect interactions. In Section 6.1.5 we will examine methods of removing the spu-

rious contribution of defect-defect interactions from the energy Edef,q
T , and devise a

method in which ∆V corrections are not required.

6.1.4 Chemical Potentials

The formula for the formation energy of a defect includes the chemical potentials

of the species that have been added or removed to form the defect. These are dif-

ficult quantities to define unambiguously in a substance composed of more than

one species as it is not possible to decide from the end product alone how much of

the total energy should be attributed to one element and how much to the others.

However, certain facts make it possible to put upper and lower bounds on the chem-
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ical potentials involved regardless of the formation conditions, and some knowledge

of the conditions under which the substance was formed is often then sufficient to

decide or calculate where in this range the chemical potential is likely to lie.

Taking Alumina as a specific example, we need to find ranges for the chemical

potentials of the aluminium and oxygen ions, µAl and µO. All such thermodynamic

quantities are temperature dependent, and we want to approximate the conditions

under which the oxide was formed as closely as possible, so we will work at a fixed

temperature T throughout this derivation, then attempt to calculate µ(T ) in terms

of µ(0), which we are more likely to be able to obtain with electronic structure

methods.

From the fact that the solid forms from gaseous oxygen and bulk aluminium

at standard pressure and temperature T , and is then stable, we can be sure that the

chemical potential per atom of both species in the bulk is lower than it would be

in their elemental forms. Denoting by µ0
O(T ) the chemical potential of an oxygen

atom in gaseous O2 at standard pressure and temperature T , this gives us

µO(T ) ≤ µ0
O(T ) . (6.10)

The value of µ0
O(T ) is a well-defined quantity at a specific temperature, the evalua-

tion of which will be discussed below. Similarly

µAl(T ) ≤ µ0
Al(T ) , (6.11)

where µ0
Al(T ) is the Gibbs free energy per atom of metallic Aluminium.

The lower limits can be determined from the energy of formation of Al2O3

from these same constituents. The Gibbs free energy of formation of the oxide,

∆GAl2O3

f (T ), is given by the difference between the chemical potentials of the com-

pound and the elemental forms that compose it:

∆GAl2O3

f = µAl2O3
− 2µ0

Al − 3µ0
O (6.12)
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corresponding to the reaction

2Al(s) +
3

2
O2(g) ⇋ Al2O3(s) . (6.13)

Because the chemical potential per formula unit is given by the chemical potentials

of the components in the bulk compound, we know that

µAl2O3
= 2µAl + 3µO , (6.14)

so combining this with Eq. 6.12 gives

∆GAl2O3

f = 2µAl + 3µO − 2µ0
Al − 3µ0

O , (6.15)

Multiplying Eq. 6.10 by three and adding the above equation to it gives

3µO + ∆GAl2O3

f ≤ 3µ0
O + 2µAl + 3µO − 2µ0

Al − 3µ0
O . (6.16)

Hence,
1

2
∆GAl2O3

f + µ0
Al ≤ µAl , (6.17)

and similarly
1

3
∆GAl2O3

f + µ0
O ≤ µO . (6.18)

Because it is always true that µAl2O3
= 2µAl + 3µO, if µO is at its max-

imum value µ0
O, under the same formation conditions µAl must be at its mini-

mum, 1
2
∆GAl2O3

f + µ0
Al, and similarly if µAl takes its maximum value µ0

Al, we find

µO = 1
2
∆GAl2O3

f + µ0
O.

The chemical potential of an Aluminium atom in the metallic elemental phase

is not strongly temperature or pressure dependent, and so can be well-approximated

by the zero-temperature total energy per atom of metallic aluminium, as obtained

using the same theoretical framework as was adopted for the alumina calculations.

This requires, in a pseudopotential calculation, that we assume the same implicit
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reference state — that of separated electrons and pseudo-ions (with all their valance

electrons) at rest.

For the oxygen, on the other hand, the elemental form of which is molecular

O2 gas, temperature and pressure will have a very strong effect on the chemical

potential, so we need a model for the chemical potential µO(pO2
, T ) which includes

the behaviour of an ideal gas of O2 molecules, treating translational, vibrational and

rotational degrees of freedom explicitly. A second and more serious problem is that

calculation of the ground state of the oxygen molecule is a very tough problem for

electronic structure methods, particularly density functional theory, and the results

are very much dependent on the method used. Here we modify and apply the

method presented in [52] which invokes a thermodynamic cycle corresponding to

the formation of an oxide, and thus avoids the ill-defined calculation of the total

energy of the O2 molecule.

The obvious thermodynamic cycle to consider is the reaction for the formation

of Al2O3 itself, as the requisite calculations all have to be done anyway (although

in principle any oxide should produce the same answers). The reaction is

2Al(s) +
3

2
O2(g) ⇋ Al2O3(s) , (6.19)

where (s) refers to the bulk crystals of Aluminium metal and Alumina and (g)

to gaseous oxygen. At constant temperature and pressure, the Gibbs free energy

balance for this reaction is described by

g0
Al2O3

(T ) = 2µ0
Al(T ) + 3µ0

O(T ) + ∆G0
Al2O3

(T ) , (6.20)

where ∆G0
Al2O3

(T ) is the standard Gibbs free energy of formation of the oxide at

temperature T and g0
Al2O3

(T ) is the chemical potential per formula unit of Alumina.

We now set T to the standard temperature T 0 at which we can obtain the relevant
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experimental data and rearrange for µO(T 0)

µO(T 0) =
1

3

(
g0
Al2O3

(T 0)− 2µ0
Al(T

0)−∆G0
Al2O3

(T 0)
)
. (6.21)

The pressure dependence of µO can be modelled using the ideal gas expres-

sion:

µO(pO2
, T ) = µ0

O(T ) +
1

2
kBT log(pO2

/p0) , (6.22)

where the superscript “0” on the symbols p and µO denotes the values of these

quantities at standard pressure.

Denoting by ∆µ0
O(T ) = µ0

O(T )− µ0
O(T 0) the difference between the chemical

potential at standard temperature and that at temperature T , we can therefore

write:

µO(pO2
, T ) =

1

3

(
g0
Al2O3

(T 0)− 2µ0
Al(T

0)−∆G0
Al2O3

(T 0)
)

+∆µ0
O(T ) +

1

2
kBT log(pO2

/p0) . (6.23)

Two possible routes now exist, the most obvious of which is to look up

∆µ0
O(T ) in tables of thermodynamic data. As can be seen from the comparison

in [52], however, it is adequate to use the formula for an ideal gas of rigid dumbells

[82],

∆µ0
O(T ) = −1

2

(
(S0

O2
− C0

P )(T − T 0) + C0
PT log(T/T 0)

)
, (6.24)

where S0
O2

is the standard entropy of gaseous oxygen and C0
P the corresponding heat

capacity at constant pressure. Even when T is as high as 2000K, this approximation

only incurs an error of 0.036eV.

Our scheme for a unique definition of µAl and µO is thus complete: we choose

our formation temperature and pressure, we obtain µO(pO2
, T ) from Eq. 6.23 and

Eq. 6.24 and then from Eq. 6.14 we know µAl(T ). The only quantities taken from

experiment are ∆G0
Al2O3

(T 0), S0
O2

and C0
P , whereas µ0

Al2O3
and µ0

Al are calculated

within the theoretical framework we are using.
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6.1.5 Defect-Defect Interactions

We are attempting to simulate an isolated defect surrounded by an infinite medium of

bulk crystal. This can be looked at as a fictitious situation, as in any real solid many

such defects will be present, and defects form clusters if it is energetically favourable

for them to do so. Moreover, for reasons of stoichiometry, defects often appear as

Frenkel pairs or matched sets of Schottky vacancies. However, as a theoretical

construct, the isolated defect is entirely satisfactory, and we wish to be able to

model isolated defects accurately.

When, in practice, we define a supercell of many copies of the primitive cell

and apply periodic boundary conditions, we are imposing a repeat length on the

system. If we create a defect in one of these supercells, then the potential created

by this defect will be felt by all its periodic copies, and it will feel the potential

of an infinite lattice of copies of itself. If the defect is charged, this presents a

particular problem, as the energy of an infinite array of like-charged monopoles is

of course infinite. In the real system, positively charged defects would be associated

either with slight increases of electron density in the surrounding region, or with a

corresponding number of nearby negatively charged defects.

To make the isolated defect calculation feasible it is therefore necessary to

accompany the monopole charge on the defect with a homogeneous uniform back-

ground, of equal and opposite total charge. This makes the supercell neutral overall

and allows the Ewald method to continue to be used. In DFT calculations, this

charge neutralization step is in fact automatic and unheeded, because the solution

of Poisson’s equation for a periodic charge distribution is only defined to within an

unknown constant which is always set to zero. This is equivalent to assuming that

the cell is in fact neutral even if it is not, and that the G = 0 component of the

Fourier transform of the potential is zero.

For a system which is genuinely neutral, the average value of the potential,

vB, is irrelevant, as it appears as many times with a positive sign as with a neg-

ative one and so does not contribute to the total energy. This should also be the
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case in calculations involving charged systems, because as the background poten-

tial is genuinely undefined, it cannot appear in any quantity which corresponds to

a real observable such as a defect formation energy. In practice, the cancellation

follows because the electronic chemical potential µe is measured relative to the same

background potential as the defect calculation: if the defect has charge q, and thus

contributes qvB to the total energy of the defect cell, the electron chemical potential

term in the Zhang-Northrup formation energy formula contributes −qvB and ∆Hf

is unchanged.

Two different approaches are commonly used to ensure this alignment of

chemical potentials happens correctly in practice. The first is to try and retrospec-

tively adjust the value of the total energy of the defect cell so that the spurious

contribution from interacting periodic replicas of the defect is removed, whereas

the second is to try to align the value of EV BM we use in determining µe with the

value it has in the defect supercell — which of course includes the contribution from

the monopole charge. This latter approach constitutes the average potential align-

ment discussed in Section 6.1.3, and the former approach involves the application of

adjustments along the lines of the Makov-Payne correction [115], the practical appli-

cation of which will be discussed in Section 6.2.5. In past work, these two methods

have frequently been considered separate and complementary corrections, but the

above analysis makes clear that they are both attempts at the same correction and

should not be applied together.

The third alternative is to try and correct the boundary conditions on the

potential during the simulation — an a priori correction rather than an a poste-

riori post-processing step. To a limited extent, this has been tried before: the

Local Moment Counter Charge (LMCC) method of Schulz [147] uses a model den-

sity constructed out of spherical Gaussians to match the badly-behaved moments

of the density of the defect cell, subtracting them to leave a periodic density with

no long-range multipole interactions, and calculating the interaction of the model

part analytically. However, this method is highly unsatisfactory as it neglects the

polarization response of the surrounding medium and assumes that the remaining
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periodic charge after the moments have been removed closely mirrors the true peri-

odic charge of the crystal — which there is no guarantee will be the case. Wright and

Modine [182] demonstrated that LMCC corrected energies often converge consider-

ably more slowly to the correct answer than the uncorrected values as the supercell

size increases.

A much more satisfying approach would be to apply the correct boundary

conditions to each component of the system at the point of calculating the Hartree

potential, during the simulation. If the charge density in the defect supercell is

ndef (r) whereas in the same supercell of perfect crystal it was nperf(r), then we can

define the difference

∆n(r) = ndef(r)− nperf(r) , (6.25)

which is the aperiodic part of the charge, and sums to the defect charge q. It is this

part of the charge that should not be treated with periodic boundary conditions;

instead we should insist that limr→∞ V (r) = 0. Appendix B discusses how to ap-

ply these corrected boundary conditions to all the components of the DFT energy

functional in such a way that they could be incorporated into a simulation.

In practice, calculations using this approach turned out to be less reliable

than a relatively simple but novel interpolation scheme that will be described in

Section 6.2.5. This interpolation scheme was thus used to produce the final results

presented in this thesis.

6.2 Density Functional Theory Calculations

6.2.1 Geometry

The Corundum, or α-alumina, structure in which Al2O3 is found is a complex struc-

ture dictated by the demands of the coordination of the Aluminium and Oxygen

ions and the preference for close packing. It is commonly described by either of

two unit cells: although the primitive cell is rhombohedral, a hexagonal unit cell is

frequently a more convenient choice for the purposes of calculations and graphical
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representations. To a first approximation, the oxygen ions occupy a hexagonal close

packed structure and the aluminium ions occupy the octahedral interstitial sites,

which themselves form an alternative hcp lattice. However, because of the 2:3 coor-

dination required to maintain charge neutrality, there are only Al ions at two-thirds

of these interstitial sites, which distorts the positions of the oxygen ions as they are

drawn towards the sites which do contain metal ions. The close packed layers can

be described by the sequence AaBbAcBaAbBcA, where A,B refer to oxygen layers

in their two interlocking positions, and a, b, c refer to the three possible positions of

the vacancies in the aluminium layers. The first and last A’s are equivalent layers,

so the structure repeats every six hcp layers of oxygen atoms — necessitating a large

unit cell in the hexagonal representation. Figure 6.1 shows a supercell of 2× 2× 1

copies of the hexagonal cell in side on and top down view.

The rhombohedral primitive cell contains 10 atoms (two formula units of

Al2O3) and can be represented with the lattice vectors ti:




t1x t1y t1z

t2x t2y t2z

t3x t3y t3z


 =




s 0 r

−s/2
√

3s/2 r

−s/2 −
√

3s/2 r


 . (6.26)

The lengths s and r are defined in terms of the rhombohedral lattice constant arho

and the angle β between any two lattice vectors by s = 2arho/
√

3 sin(β/2) and

r =
√
a2

rho − s2. Crystallographic measurements [183, 153, 6] give arho = 9.694 Bohr

and β = 55◦3′. These parameters can be optimized within DFT for consistency.

Within this structure, the oxygen ions (left) and aluminium ions (right) are at

positions r = ut1 + vt2 +wt3 given in terms of fractions of the lattice vectors ti by:

u v w
2δO 1/2− 2δO 3/4
1/4 1− 2δO 1/2 + 2δO

1/2− 2δO 3/4 2δO
1/2 + 2δO 1/4 1− 2δO

3/4 2δO 1/2− 2δO
1− 2δO 1/2 + 2δO 1/4

u v w
1/6− δAl 1/6− δAl 1/6− δAl

2/6 + δAl 2/6 + δAl 2/6 + δAl

4/6− δAl 4/6− δAl 4/6− δAl

5/6 + δAl 5/6 + δAl 5/6 + δAl

(6.27)

Crystallographic measurements [6] give values of δO and δAl of 0.027 and
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Figure 6.1: Supercell of Al2O3 in the hexagonal setting, with 2 × 2 × 1 copies of
the hexagonal unit cell. Left: side view along the a axis, showing the planes of
oxygen ions (red) and the aluminium ions (grey) only occupying 2/3rds of the sites.
Right: Top down view along the c axis, showing the layers of triangles of oxygen ions
slightly distorted out of their hcp positions by the absence of some of the aluminium
ions. The blue dots denote those atoms forming a particular layer of O ions, to
demonstrate the triangles of oxygen above and below each Al ion. This is the same
supercell used for later defect formation energy calculations in QMC.

0.018 respectively. These are the fractional displacements along the axes from the

hexagonal close packed structure due to the ‘missing’ Al ions. These would also

need to be optimized within DFT.

From examining the positions above, the relation to a bipartite hcp structure

is clear: if all the δ′s were zero and there were extra Aluminium ions at (0,0,0) and

(3/6,3/6,3/6), the bipartite hcp form would be restored.

The small angle between the lattice vectors means that the resulting rhom-

bohedral cell is very elongated, so it is more common to work with the hexagonal

cell defined by:




t1x t1y t1z

t2x t2y t2z

t3x t3y t3z



 =





√
3a0/2 a0/2 0
0 a0 0
0 0 c0



 , (6.28)
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where the lengths a0 and c0 are related to the parameters of the rhombohedral

primitive cell by arho =
√

( c0
3
)2 + ( a0√

3
)2 and sin(β/2) = a0/2arho. Working with this

cell, c0 and a0 are optimized within DFT and can be compared to arho and β as a

consistency check.
This larger cell contains six formula units of Al2O3, with ions at:

u v w
0 1/3− δO 0/6

1/3− δO 0 0/6
2/3 + δO 2/3 + δO 0/6

δO 2/3 1/6
1/3 1/3 + δO 1/6

2/3− δO 1− δO 1/6
1/3 + δO δO 2/6

2/3 2/3− δO 2/6
1− δO 1/3 2/6

0 2/3 + δO 3/6
1/3− δO 1/3− δO 3/6
2/3 + δO 0 3/6

δO 1/3 + δO 4/6
1/3 1− δO 4/6

2/3− δO 2/3 4/6
1/3 + δO 1/3 5/6

2/3 δO 5/6
1− δO 2/3− δO 5/6

u v w
0 0 3/12− δAl

0 0 5/12 + δAl

0 0 9/12− δAl

0 0 11/12 + δAl

1/3 2/3 1/12 + δAl

1/3 2/3 5/12− δAl

1/3 2/3 7/12 + δAl

1/3 2/3 11/12− δAl

2/3 1/3 1/12− δAl

2/3 1/3 3/12 + δAl

2/3 1/3 7/12− δAl

2/3 1/3 9/12 + δAl

(6.29)

Another common way of quoting the positions is to state the position of one

atom of each species and the full set of symmetries, which can be used to generate

the positions of all the rest. In this case, two parameters uAl and vO are usually

specified, which are related to δAl and δO by vO = 1/3 − δO and uAl = 1/3 + δAl.

Then uAl ≃ 0.352 and vO ≃ 0.306, and there is an Al ion at (0, 0, uAl) and an O ion

at (vO, 0, 1/4), and all other equivalent positions.

6.2.2 Convergence Tests

In order to have confidence in quantities provided by DFT, the energies it provides

must be converged with respect to a variety of criteria, and ideally should be in-

dependent of the various choices of approximation for exchange correlation (XC)

144



CHAPTER 6. POINT DEFECTS IN ALUMINA

functional and pseudopotential (PSP). In this section, we will summarize the results

of the necessary tests and comparisons. The DFT calculations described here were

performed with CASTEP [34], one of the longer-established plane-wave DFT codes.

In CASTEP, in common with all plane-wave DFT codes, the single particle

orbitals are represented in a plane wave basis with coefficients ci,k+G, such that

ψik =
∑

|G|<Gcut

ci,k+Gei(k+G).r . (6.30)

As before, it is important to ensure that the maximum plane-wave energy Ecut =

1
2
G2

cut is large enough that the energy is converged with respect to the size of the

basis.

An additional constraint for orbitals to be used in quantum Monte Carlo

calculations is that the variance of the local energy is more strongly dependent on

the quality of the wavefunction, than the total energy. Because the variance is

the primary factor in determining the number of steps for which the calculation

must be run before an accurate energy and corresponding error bar is obtained, it

is important to lower it as much as possible by improving the trial wavefunction.

In the case of the orbitals, increasing the plane wave cut off continues to lower

the variance considerably beyond the point at which total energies within DFT are

fully converged. Although using a larger basis set than is necessary for total energy

convergence within DFT slows down the DFT calculation, the CPU time required

for the DFT calculations is negligible compared to that for the subsequent DMC

calculations, so the sacrifice is easily justified.

Figure 6.2 shows the behaviour of the total energy within DFT of a rhom-

bohedral cell of Al2O3 as the plane wave cutoff is varied, as calculated using the

LDA and with Vanderbilt [169] Ultrasoft Pseudopotentials (USPs). The total en-

ergy was converged to 0.015 eV/atom at 550 eV, so this cutoff was used throughout

the USP calculations. USPs cannot be used in QMC simulations, so we also need to

test the convergence of the Trail-Needs Dirac-Fock (TN-DF) norm-conserving PSPs

we will be using there [162, 163]. There are two available versions of the TN-DF
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Figure 6.2: Convergence of total energy of a 4× 4× 4 rhombohedral cell of Al2O3

with plane wave cut off Ecut with Vanderbilt ultrasoft pseudopotentials. The total
energy is converged to 0.015 eV/atom by Ecut = 550 eV. This type of pseudopo-
tential requires considerably lower cutoffs than norm-conserving psps, so will be
used throughout the geometry optimization. However, they cannot be used in QMC
calculations.

pseudopotentials, which differ in their choices of core radii. The harder (shorter

core radius) versions are intended for high-accuracy atomic calculations, whereas

the softer (larger core radius) versions are adequate for all other purposes. Tests

showed that using the harder pseudopotentials made no appreciable difference to

geometry parameters or binding energies, although they required a notably higher

cutoff energy. Figure 6.3 shows that the softer TN-DF PSPs require a cutoff of

around 1700eV, whereas the harder versions require over 2500 eV for the same level

of convergence.

The next important optimization is of the bulk cell geometry. This opti-

mization was performed in the aforementioned rhombohedral unit cell with four

parameters: arho, the rhombohedral lattice constant; αrho, the angle between the

lattice vectors; and uAl and vO, where uAl − 1
3

and 1
3
− vO are the fractional shifts

along the lattice vectors of the Aluminium and Oxygen ions, respectively, due to

the vacant sites. Starting from the experimental values for these parameters from
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Figure 6.3: Convergence of total energy of 2×2×2 and 3×3×3 rhombohedral cells of
Al2O3 with plane wave cut off Ecut with hard and soft Trail-Needs Dirac-Fock pseu-
dopotentials (see text). Although the total energy is converged to 0.015 eV/atom by
Ecut = 1700 eV, we generate the orbitals for QMC at Ecut = 3000 eV as the variance
continues to reduce long after the energy is converged. 3000 eV happened to be the
point at which the memory to represent the required 288 orbitals of the defect cell
exceeded the available 2GB limit.

Ref. [6], the structure was optimized in DFT with a range of functionals and both

types of pseudopotential described above, in order to estimate the effect of varying

either choice. The results are summarized in Table 6.1, along with the mean lengths

of the nearest neighbour (NN) Al-O bonds.

Because alumina is such a strong insulator, convergence of the total energy

for fixed geometry with increasing k-point sampling is rapid, the difference between

Monkhorst-Pack [122] grids of 2× 2× 2 and 3× 3× 3 being less than 0.02 eV/atom

(see Figure 6.3) and between 3× 3× 3 and 4× 4× 4 less than 0.002 eV/atom. The

optimized geometry parameters turn out to have some minor sensitivity to k-point

sampling, so 4×4×4 grids were used throughout the bulk investigations with DFT.

This is sufficient to converge the parameters to the accuracy shown in Table 6.1.

It is important, when performing calculations within the framework of DFT,

to establish that the answers are not strongly dependent the specific choices of ap-

proximation used. If they are, it sometimes suggests that the properties being mod-

147



CHAPTER 6. POINT DEFECTS IN ALUMINA

Method arho (A) αrho(
◦) uAl vO aAl−O(A)

Experiment [6] 5.136 55.28 0.352 0.306 1.915
LDA-USP 5.052 55.30 0.352 0.307 1.885
GGA-USP 5.150 55.29 0.352 0.306 1.921

LDA-TNDF 5.147 55.39 0.352 0.305 1.921
GGA-TNDF 5.169 55.29 0.352 0.305 1.928

Table 6.1: Optimized geometry parameters for bulk Alumina compared to experi-
ment. The results for different choices of exchange-correlation functional (LDA and
GGA) and different types of pseudopotential (Ultrasoft and Trail-Needs Dirac-Fock)
are all in reasonably good agreement with the experimental parameters. As usual,
the LDA overbinds the solid, while the GGA mildly underbinds it. Conveniently,
since this is the combination used in the QMC, (but probably fortuitously) the
TN-DF pseudopotentials in the LDA give the closest match to the experimental
parameters.

elled are not accurately described within density functional theory. A good example

is the bandgap, which comes out strongly functional-dependent but is always under-

estimated. Fortunately, the above geometry tests and the comparison of cohesive

energies in Table 6.3 in Section 6.3.5, which also includes QMC results, demonstrate

that while the formation and atomization energies do depend, as expected, on the

choice of exchange-correlation functional used and mildly on the pseudopotential,

the differences are not large. As is commonly observed in metal oxides [62, 83], LDA

overbinds the dimers and the solid, whereas GGA underbinds them (mildly).

6.2.3 Improved Chemical Potentials

We now begin to examine the implementation in DFT of the various schemes pre-

sented in Section 6.1 for improving the accuracy of formation energy calculations.

The results presented in these sections use all of the techniques (described in Sec-

tions 6.2.3, 6.2.4 and 6.2.5) even though by necessity they were introduced one by

one. As previously mentioned, defect formation energies are functions of the chem-

ical potentials of the atomic species involved and of the electrons. As alumina is an

insulator, the Fermi energy must lie somewhere within the energy gap, but precisely

where will depend on the level of doping with impurities of differing valence. If Al3+
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ions are replaced with, for example, Mg2+ ions, then the number of free electrons

is reduced and the chemical potential falls. If Al3+ ions are replaced with Ti4+ions,

the chemical potential will rise. In both cases, some sort of charged compensating

defect will also form, the energy of which will depend on the chemical potential,

until equilibrium is obtained.

To illustrate the effect of each improvement, results for the formation energy

of the oxygen vacancy V q
O will be shown as a function of the Fermi energy ǫF , as

they illustrate well many of the subtleties of the calculations. The Fermi energy

is specified relative to the valence band maximum, and is defined by the equation

µe = EV BM + ǫF . ǫF lies between 0 (corresponding to the valence band maximum),

and the bandgap Eg (corresponding to the conduction band minimum). We set

the maximum allowed value of ǫF to the DFT bandgap rather than the real gap to

prevent spurious high-charge states appearing stable within DFT.

The formation energy of an oxygen vacancy of charge q in the Zhang-Northrup

formalism is

∆Hf = Eq
def −Eperf + µO + qµe . (6.31)

As the formation energy contains a qµe term, it varies in energy with ǫF unless

q = 0. Therefore, at any particular value of ǫF , one of the charge states q = 0, 1, 2

will be the most stable (lowest ∆Hf). In the following graphs we plot only the most

stable states for each type of calculation, with crosses marking the changeovers.

Figure 6.4 shows a comparison of the two schemes for calculating the chemical

potential. In the first, we rely, for the calculation of µO, on calculation of the

total energy of the oxygen molecule using the same method as for the bulk. We

then assume the formation conditions represented the oxidation limit (the lower

bound of the chemical potential in Eq. 6.18), and simply take µO = 1
2
ET (O2).

This gives a highly method-dependent result, as the total energy of O2 represents

a challenging problem for DFT for well-documented reasons. Therefore, when we

compare formation energies, we find they vary by as much as 2 eV between different

combinations of pseudopotential and exchange-correlation energy, as seen in Figure
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Figure 6.4: Comparison of formation energies of the Oxygen vacancy (a) without
and (b) with the improved chemical potential scheme described in Section 6.1.4.
Without it, there is a spread of values of Hf of nearly 2eV between different XC
functionals and PSPs. With it, they all fall in a region of around 0.2eV.
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6.4(a). This is clearly unsatisfactory. Figure 6.4(b) shows the same plots with the

method of Finnis, Lozovoi and Alavi (FLA) used for the calculation of µO, bypassing

the calculation of ET (O2) by using the experimental oxide formation energy. Using

this method, the lines fall almost on top of each other and vary by no more than

around 0.2 eV. This suggests that the majority of the disparity in formation energies

between different functionals and pseudopotentials originates from the calculations

of the atomic or molecular systems required for the µi calculations rather than

those for the solid systems. This is in line with our expectations of where DFT will

produce accurate answers and where it will fail. For the rest of the work in this

thesis, including the DMC results, we thus use the FLA method.

6.2.4 Band Gap Corrections

In the region surrounding a defect, the local geometry and electronic structure are

significantly changed from the bulk and there will be electrons occupying levels

which can be meaningfully described as ‘defect levels’, in that they are localized

around the defect site. In these cases, the highest occupied states, which are in

the band gap, can either be derived from conduction band states which have been

lowered in energy by the presence of the defect, or from valence band states which

are raised in energy by the presence of the defect. In the latter case, if the defect-

induced states are not very strongly localized they are similar in character to the

valence band states, which are occupied, and the resulting energy eigenvalue will be

as correct as can be expected in DFT. In the former case, however, the defect states

are similar to conduction band states, which are not occupied, and thus suffer from

the well known DFT band-gap problem, whereby energy gaps to unoccupied levels

are underestimated.

The resulting underestimation of conduction band-derived states is a common

problem in DFT calculations on defects, and is intrinsic to the method so could be

considered to be ‘correct’ at least within DFT. However, it is common to try and

make the DFT values of ∆Hf match experimental results by applying an empirically
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Figure 6.5: Band gap correction scheme. The Valence Band Maximum (VBM) and
Conduction Band Minimum (CBM) are shown in blue and green respectively. The
fact that the DFT energy gap differs from the real one (shown in red) by an amount
∆Eg means that while the eigenvalues of states tied to the valence band, such as
that labelled ǫdef,v can be believed, those tied to the conduction band, such as ǫdef,c,
are assumed to be wrong by approximately ∆Eg.

justified correction based on a rigid shift the energy eigenvalues of the occupied

defect levels. Figure 6.5 demonstrates how this works schematically. If there are m

electrons occupying defect states derived from the conduction band and the energy

gap is underestimated by ∆Eg, the usual remedy [187] is to add m × ∆Eg to the

energy of the defect cell. In semiconductors this adjustment appears to be a vital

remedy to make the calculated defect formation energies agree with experiment.

However, it represents a severely uncontrolled approximation, especially in the case

of strongly ionic insulators where, rather than being delocalized like conduction-

band-derived states in a semiconductor, the defect states are often strongly localized.

Furthermore, it is often unclear whether a particular state is more conduction-band-

like or valence-band-like as these are somewhat ill-defined terms. In these cases, it

is not obvious that the band gap correction should be applied at all. Even worse,

because such solids generally have large band gaps, ∆Eg is large if it is applied.

Figure 6.6 illustrates the effect of the band gap correction in calculations of

the Oxygen vacancy. If the defect is neutral, there are two localized electrons left

on the vacancy site, which was previously an anion site containing an O2− ion with

a filled 2p shell of 6 electrons. If the defect has +1 charge, there is one localized
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Figure 6.6: The effect of the band gap correction on the formation energies of an
Oxygen vacancy. Shown in green are the uncorrected formation energies. The blue
line applies the full m × ∆Eg, and the red line applies the correction of Eq. 6.32.
Evidently, the variation depending on which method is chosen is huge. The latter
one, however, should give the most reliable results.

electron. If it has +2 charge, there are none. In this case, therefore, m = 2 for V 0
O,

m = 1 for V 1+
O , and m = 0 for V 2+

O . Note, however, that even though there is no

longer an Oxygen nucleus at the defect site, it is not necessarily the case that the

states in the region must derive from the unoccupied aluminium 3s orbitals at the

bottom of the conduction band — they may still have the symmetry of the now-

missing oxygen s-orbitals. The green curve in the figure shows the formation energy

of the defect as a function of ǫF with no bandgap corrections applied. The blue curve

shows it with a full m × ∆Eg correction applied (Eg in LDA is 6.88 eV, compared

to the real gap of 9.12 eV, so ∆Eg is 2.24 eV). The difference between the green

and blue lines for the neutral vacancy is thus a full 4.48 eV, and our uncertainty

about the true value of this correction would make a mockery of the high accuracy

obtainable elsewhere in the calculation.

A significant improvement in the treatment of this problem may be obtained

by attempting to estimate what a sensible value for m would be, rather than use the
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full number of occupied states [11]. In effect, one tries to calculate the percentage

of conduction band nature in the defect states by calculating their overlap with all

the conduction band states of the perfect crystal. The correction then becomes

∑

i def

∑

j cond

|〈ψdef
i |ψperf

j 〉|2 ×∆Eg =
∑

i def

(1−
∑

j valence

|〈ψdef
i |ψperf

j 〉|2)×∆Eg . (6.32)

where the superscript labels perf and def refer to the wavefunctions of the perfect

crystal supercell and the defect-containing supercell respectively. This may be im-

plemented as a post-processing step, loading in the self-consistent wavefunctions of

both defect and perfect systems and calculating all the required overlaps. In the

case of the oxygen vacancy, one obtains m(V 0
O) = 2× 0.37 and m(V 1+

O ) = 1× 0.37.

The formation energy with this band gap correction plotted is in red in Figure 6.6

and appears more believable than either extreme, and will be used where required

in the rest of the DFT results in this work.

Despite this improvement, however, the band gap correction is still an un-

controlled approximation, and it is desirable to test its accuracy. Since quantum

Monte Carlo does not suffer from the problem that makes the band gap correction

necessary in DFT, comparison with QMC results may yield some information about

how much of the band gap correction to apply to the DFT results.

6.2.5 Finite Size Scaling

The importance of finite size errors in periodic supercell calculations of charged

defects has gained greater and greater recognition in recent years, and a very large

number of attempts have been made to correct or negate them. Makov and Payne

[115] proposed some of the most commonly used correction methods, expanding

upon work by Leslie and Gillan [107]. In their approach, they calculate analytically

the expansion of the energy of a periodic array of interacting multipoles. Their

expression for the energy of a supercell of size L, relative to the infinite limit as
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L→∞, E0, is

E(L) = E0 −
q2α

2ǫL
− 2πqQ

3ǫL3
+O[L−5] , (6.33)

where q is the monopole aperiodic charge, Q is the quadrupole moment of the

aperiodic charge, ǫ is the relative dielectric constant of the medium in which the

charges are embedded and α is the Madelung constant, which is a property of

the shape of the primitive cell. For a simple cubic system, α = 2.8373; for this

hexagonal system, with different lengths in the a and c directions, α is a function

of both lengths.

The Makov-Payne corrections are fairly widely used (see eg [45, 64] and many

more), but have been shown to be unreliable in a variety of circumstances. This

unreliability is relatively easy to verify, by studying the same defect in larger and

larger cells and extrapolating the trend with L to L→∞ to find a converged value.

This infinite-L result can then be compared with the corrected value obtained at

fixed L. Castleton et al. [27] gave an exhaustive comparison of use of the first,

and first and second terms of the Makov-Payne correction, and correction of the

average potential. None of these methods were very reliable but the indications

were that the form, though not the magnitude, of the Makov Payne correction,

with a term ∝ 1/L and a term ∝ 1/L3, appeared accurate. Castleton et al. also

found that if they used fitted parameters rather than the calculated or experimental

values of α, ǫ and Q, they obtained much better results. This agrees with the

conclusions of Shim, Lee and Nieminen [150] and Lento, Mozos and Nieminen [106],

who found that Makov-Payne corrections had much greater reliability in situations

where, as the charge q is increased, the charge density was becoming closer to the

bulk distribution rather than further away. For example, if an ion that is normally

+3 charged is removed from a site, the neutral vacancy corresponds to taking away

the 3 electrons it previously donated to nearby anions, changing the nearby electron

density significantly. As the charge on the defect is increased, electrons are returned,

until at q = −3 the density around the neighbouring anions is back to where it was

before. In this case the Makov-Payne corrections are reported to be accurate, as

155



CHAPTER 6. POINT DEFECTS IN ALUMINA

the charge could be regarded as pointlike and centered on the defect (in this case,

it represents the missing cation). In other situations, where the nearby charge

density is changed very significantly from its perfect crystal form and polarization

is important, convergence of the Makov-Payne corrected results may be slower than

using the convergence of the uncorrected results.

In this work, we introduce what at first appears a minor variant on the above

fitting procedure but one that turns out to have a number of useful features. Exam-

ining Eq. 6.33 we see that the first order correction term, which dominates in single

defects where the monopole-quadrupole and dipole-dipole terms are small, contains

the term α/L, which is often referred to as the Madelung potential vM . Previous

methods have taken α as fixed for a particular lattice and used the behaviour of the

total energy as a function of L for fixed lattice geometry to estimate ǫ. However,

this is unnecessarily limiting: if we change the shape of our supercell by varying

the repeat length along one axis at a time, we change α (and also make L rather

ill-defined although vM is still well defined). If we then plot the total energy against

vM for a wide range of cell shapes and sizes, we can still extrapolate to an infinite cell

by taking the limit as vM → 0. In practice this is accomplished by fitting a straight

line E(vM) = E0 + bvM to the calculated energies. Comparing with Eq. 6.33 gives

b = q2/2ǫ, so we can also find an effective dielectric constant from this method.

What makes this method especially useful is that it is possible to design unit cells

where the Madelung constant becomes negative, so that we have points on either

side of vM = 0, and rather than an unreliable extrapolation to a point outside the

range we are merely interpolating, which is much more reliable.

Figure 6.7 shows the results of this method applied to the four principal

intrinsic point defects of alumina in their highest charge states. As expected, it works

most reliably for V 3+
Al for the reasons given above, but remains perfectly adequate

for V 2+
0 , with uncertainty in the interpolation not exceeding around 0.2 eV. In every

case, a reasonably accurate value can be obtained in the vM → 0 limit. The value

of ǫ varies somewhat according to which defect is studied but it is always in the

range ǫ = 3.4 to 3.9. This variation may be because in reality the dielectric tensor
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Figure 6.7: Finite size scaling graphs for the principal intrinsic defects of alumina,
each in their highest charge states. (a) Aluminium vacancy, charge +3 (b) Alu-
minium Interstitial, charge +3 (c) Oxygen Vacancy, charge +2 (d) Oxygen Inter-
stitial, charge −2. As expected, the method works best for V 3+

Al but causes an
uncertainty of no more than around 0.2 eV on any of the defects. From left to right
along the x-axis, the points represent the cells 2×2×3, 2×2×2, 4×4×1, 3×3×1
and 2× 2× 1. To test that extending along different axes was not giving different
trends, the challenging 3× 3× 2 calculation (2592 electrons) was tried for V 3+

Al — it
too falls on the same line.
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in Alumina is anisotropic, with eigenvalues differing by around 20%. Although

the formalism could easily be extended to cope with anisotropy it would probably

not give any real benefit. We take the average value between the various defects,

ǫfit = 3.7, and thus apply the correction

∆E = q2vM/2ǫfit (6.34)

to all of our defect cell total energies.

6.2.6 Defect Formation Energies

A vital part of defect formation energy calculations is relaxation of the geometry.

When an atom has been added or removed to form a defect, the surrounding atoms

feel large forces, especially in cases where the defect site is charged, and relax towards

or away from it to find their new equilibrium positions. In the defect supercells we

need to leave a region of bulk-like perfect crystal surrounding the defect, so we only

allow atoms within a radius of 3.4 Å to move. The moving atoms include 1st, 2nd

and 3rd nearest neighbours of the defect site (referred to as 1NN, 2NN and 3NN

respectively). Increasing the radius of relaxation to include 4NN as well changed

the results by less than 0.05eV in most cases, so this range was considered adequate.

Table 6.2 shows the bond lengths and changes in them for the optimized geometry

for each defect species in all accessible charge states. We note good agreement with

the geometries of Matsunaga et al [119].

From these relaxed geometries, the final defect supercell energies can be com-

pared with the perfect crystal supercell energy and the chemical potentials calculated

by the methods of Section 6.2.3 to find formation energies for each species and each

charge state. Figure 6.8 shows the collated results of all of these calculations, with

bandgap corrections in the form detailed in Section 6.2.4, and fitted Makov-Payne

style defect-defect interaction corrections.

Our results differ in a number of significant ways from previous calculations

of the same quantities. For example, Matsunaga et al applied full m×∆Eg bandgap
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Species 1 NN Change (to) 2 NN Change (to) 3 NN Change (to)
Bulk Al 0.189 (6 O) 0.272 (4 Al) 0.317 (3 Al, 3 O)
V 0

Al 0.201 6.82% 0.262 -3.50% 0.318 +0.11%
V −1

Al 0.201 6.81% 0.250 -8.04% 0.317 +0.63%
V −2

Al 0.201 6.81% 0.257 -5.43% 0.316 -1.58%
V −3

Al 0.202 7.16% 0.253 -6.81% 0.314 -2.52%
I site 0.189 (2 Al) 0.195 (6 O) 0.272 (6 Al)
Al0i 0.214 12.96% 0.213 +9.23% 0.279 +2.57%
Al+1

i 0.184 -2.65% 0.220 +12.82% 0.281 +3.31%
Al+2

i 0.183 -3.17% 0.221 +13.33% 0.281 +3.31%
Al+3

i 0.182 -3.70% 0.221 +13.33% 0.281 +3.31%
Bulk O 0.189 (4 Al) 0.268 (12 O)
V 0

O 0.186 -1.59% 0.268 -0.06%
V +1

O 0.197 +4.51% 0.265 -1.18%
V +2

O 0.207 +9.55% 0.261 -2.55%
I site 0.189 (2 Al) 0.195 (6 O) 0.272 (6 Al)
O0

I 0.184 -2.65% 0.211 +8.21% 0.276 +1.47%
O−1

I 0.176 -6.88% 0.216 +10.77% 0.273 +0.37%
O−2

I 0.167 -11.64% 0.222 +13.85% 0.270 -0.74%

Table 6.2: Geometry relaxation of the region around each defect species. For each
defect species, distance to and the identities of the the 1NN, 2NN and 3NN atoms
in the perfect crystal are shown, followed by the corresponding distances after the
geometry has been relaxed. The percentage changes in the 1NN, 2NN and 3NN
distances are also shown. As expected, positively charged defects attract the anions
and repel the cations, whilst negatively charged defects do the opposite, although
this rule is not obeyed strictly far from the defect.

corrections and no defect-defect interaction corrections and all the species of defect

existed in their highest charge states over almost the entire ǫF range. This is con-

trary to expectations from experiment and physical intuition, and in the context

of the current work can be seen to result from over-stabilization of charged defects

within periodic boundary conditions, when no finite-size corrections for defect-defect

interactions are applied. Their large bandgap correction also caused there to be neg-

ligible regions of stability for certain defects, such as V +1
O , which given the known

existence of F 1+ centers in alumina [61] is unlikely. Figure 6.8 shows a large region

of stability for V +1
O in line with expectations.

Several key points about the nature of defects in alumina can be inferred from
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Figure 6.8: Defect Formation Energies of the four main types of intrinsic point defect
in Alumina, calculated in DFT with ultrasoft pseudopotentials and the LDA. The
determination of µO was carried out at T = 2000 K and pO2

= 10 atm, illustrative
of a feasible point at which the defect concentrations could become frozen.

Figure 6.8. Firstly, as the Fermi energy varies over its accessible range, the dominant

species of defect switches from being Oxygen vacancies at low ǫF to Aluminium

vacancies at high ǫF . This suggests strongly that Schottky disorder (removal of

quintets of vacancies) will be the prominent form of intrinsic disorder, with reactions

of the form

nil ⇌ 3V 2+
O + 2V 3−

Al . (6.35)

Secondly, interstitials are greatly disfavoured relative to vacancies. The natural (and

lowest energy) positions for an interstitial are the vacant octahedrally coordinated

empty sites of the Al sublattice, where Al ions would sit were it not for the 2:3

coordination. However, this site has nearest neighbours of both types of ion at

comparable distances (0.185 nm to 2 Al3+ ions, 0.195 nm to 8 O2− ions), and inserting

either ion into this site is strongly energetically unfavourable. Presumably, in the

case of the oxygen ion, the large ionic radius plays a role in making this the case.

Finally, we address briefly a slightly more complex defect that has been sug-
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gested as candidate for oxygen diffusion in alumina [37]. Several other defect com-

plexes have a comparable formation energy to those shown above, but the most

prominent one is the AlO defect, VAlO, involving removing adjacent Aluminium and

Oxygen ions. As ǫF is varied, this is stable in states ranging from q = 0 to q = −3,

and would be the most stable defect over some of the range. As can be seen from

its formation energy in Figure 6.8, AlO is promising candidate structure for oxygen

diffusion under certain circumstances, particularly if its migration barrier turned

out to be lower than that of VO and concentrations under reasonable formation con-

ditions were high. Such issues will be the subject of further investigation beyond

the scope of this thesis.

6.3 Quantum Monte Carlo Calculations

6.3.1 Generation of Quantum Monte Carlo orbitals

When generating orbitals for quantum Monte Carlo, one is faced with several con-

straints that do not apply to DFT. Firstly, the Vanderbilt ultrasoft pseudopotential

formulation cannot be applied in QMC as they make use of an augmentation charge

which means the orbitals do not represent valid full single-electron states. We are

therefore limited to norm-conserving pseudopotentials, and we employ the Trail-

Needs pseudopotentials already referred to, as they are designed for accurate QMC

calculations. Experience suggests orbitals derived from DFT with the LDA work

marginally better in DMC than those derived with the GGA, although there is no

firm evidence either way. We use LDA orbitals in the QMC calculations in this

work. The plane-wave cutoff was 3000eV as stated, to reduce the variance as much

as possible within the available computer memory. Calculations of the DFT defect

formation energies with the TN-DF PSPs at 3000eV give nearly identical answers

to those obtained using the ultrasoft pseudopotentials at 550eV.

Plane waves are an immensely inefficient representation to use in QMC calcu-

lations, as the number of function evaluations to determine the value of the orbital
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at a particular point scales with the system size, and this introduces an unnecessary

extra factor of N into the scaling with system size. The plane-wave representation is

therefore converted to a blip representation using the methods described in [3]. Blip

representations use a set of B-splines, which are localized cubic splines, centered on

the points of a regular grid with spacings (a, b, c) along each axis. The blip function

centered on rs = (xs, ys, zs) has the form

Θs(r) = φ((x− xs)/a)φ((y − ys)/b)φ((z − zs)/c) , (6.36)

where φ(ξ) is a localized cubic function with continuous first and second derivatives

(see Figure 6.9)

φ(ξ) =





1− 3
2
ξ2 + 3

4
|ξ|3 0 ≤ |ξ| ≤ 1 ,

1
4
(2− |ξ|)3 1 ≤ |ξ| ≤ 2 ,

0 |ξ| ≥ 2 .

(6.37)

The orbital n is then built from the blip functions at each grid point multiplied

by coefficients ans

ψn(r) =
∑

s

ansΘs(r) . (6.38)

The blip coefficients are closely related to the plane wave coefficients and can be
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obtained from them by fast Fourier transforms and some linear algebra (see [3]).

Because the blip functions overlap, at any particular position in the system

there are 64 nonzero blip functions. However, the cost to evaluate an orbital at any

specific position in the system stays fixed no matter how large the system is made

(unlike plane waves, where the number of operations required to evaluate an orbital

at a given point scales as L3). Attempts were also made to localize the orbitals

[2] with a unitary transformation among the occupied orbitals. This is designed

to obtain so-called “linear scaling”, by transforming the orbitals to a maximally

localized form and then truncating them. However, it proved difficult to get reliable

and consistent results without extending the truncation radius to a range at which

the speedup became minimal as so many of the orbitals contributed in each part

of the cell. Localized blip representations of the orbitals were therefore not used in

this work.

The large computational cost of QMC calculations means that it is not fea-

sible to work with numbers of electrons as large as those DFT can cope with. Addi-

tionally, because electron-electron interactions are calculated explicitly rather than

via a mean-field approximation, we must work with a large supercell to converge

the electron-electron energy. The dependence of total energy in DFT on k-point

sampling in Section 6.2.2 shows that by 2 × 2× 2 supercells of rhombohedral bulk

we have already obtained convergence of the single-particle finite size effects. This

is already 80 atoms and 384 electrons, so going to 3× 3× 3 is unfeasible in QMC.

We thus use the 2×2×2 supercell in QMC for the bulk investigations. The 2×2×1

hexagonal supercell of the previous section remains feasible, with 576 electrons. It

is expected that Coulomb finite size errors will be minimal, and in any case will

approximately cancel between a defect supercell and a perfect supercell.

6.3.2 Jastrow Optimization

With the single particle orbitals constructed, the next step of the calculation is to

create a Jastrow factor for each simulation, to express electron correlation. The
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Jastrow factor has no effect on the nodes of the system, so in principle, in perfect

diffusion Monte Carlo it would have no effect on the total energy. However, as

mentioned in Chapter 3, the closer the trial wavefunction is to the true ground state,

the lower the variance in DMC and hence the quicker the total energy converges to

within a given statistical error. Given the extremely high computational demands

of these calculations, this is of the utmost importance.

Given that the evaluation of Jastrow factors themselves is not expected to

comprise a large fraction of the total computational effort, a fairly complex form can

be chosen, providing sufficient variational freedom to minimize the energy effectively,

while not providing so much freedom that finding a reliably optimized minimum

proves impossible. Sufficient variational freedom was found to result from a Jastrow

factor composed of 1-, 2- and 3-body terms (electron-nucleus χ terms, electron-

electron u terms and electron-electron-nucleus f terms in the forms described in

[43]). Each term is represented as a power series expansion with optimizable coeffi-

cients, multiplied by a step function with a set cutoff and a polynomial that ensures

that the right cusp conditions are obeyed automatically. In the u terms, which are

functions of electron-electron separation rij, we chose an expansion up to r8
ij, hence

7 free linear parameters and one cutoff length, with separate parameters for u↑↑ and

u↑↓. For the χ terms, which are functions of electron-ion distance riI we employed a

different χ term for each type of atom in the simulation and again allowed 7 linear

parameters and a cutoff length for the optimization. The f terms are functions of

the distances rij, riI and rjI between two atoms and an ion, and for these we used

a power series with up to second order in each distance, although many of them are

required to be equal because the electrons are indistinguishable. This leaves 8 free

parameters and a cutoff length for the f terms.

All of these parameters were optimized via the accelerated variance minimiza-

tion scheme of [41]. The optimization successfully recovers a large fraction of the

correlation energy: by running separate simulations with and without the Jastrow,

we find EV MC and EHF — the latter being the “Hartree-Fock” energy found by

using simply the Slater determinant of Kohn-Sham orbitals as our trial wavefunc-
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tion. Technically this is the DFT exact-exchange energy because the orbitals are

not calculated within Hartree-Fock theory, so produce a higher energy than true HF

orbitals would. If we assume that the DMC total energy EDMC is very close indeed

to the correct answer and recovers somewhere quite close to 100% of the correlation

energy, then
EV MC − EHF

EDMC −EHF
(6.39)

estimates the fraction of the correlation energy recovered. In the case of the 2 ×
2 × 2 rhombohedral unit cell, the fraction of the correlation energy recovered by

our Slater-Jastrow variational trial function is around 91%, which suggests we have

a respectably accurate trial wavefunction. However, since the ‘correlation energy’

accounts for around 60eV of the total energy of −2864 eV, this already suggests

our VMC description may not be of sufficient accuracy to resolve defect formation

energies of the order of 5 eV.

The situation becomes worse when we try to describe the defect cells in VMC.

Because of the low symmetry of alumina almost every atom in a defect supercell is

in a slightly different position relative to the defect. The region around the defect is

extremely inhomogeneous, which would necessitate a very large number of different

χ terms for different sites, and preferably a spatially inhomogeneous u term. The

latter is not very feasible with current technology, and the former is limited by the

demands of variance minimization, in that it becomes impossible to find a good

variational minimum as more and more free parameters are introduced. A good

balance was found to be to keep the bulk χ terms fixed on all but the defect site itself

and its nearest neighbours of each type. This allowed the correlation introduced by

the Jastrow to vary in the local environment of the defect. In the case of vacancies,

a χ term was centered on the point from which the atom had been removed, to

allow the free charge remaining on the site to be optimized. Figure 6.10 shows the

optimized Jastrow χ terms of a supercell containing an oxygen interstitial.

Several interesting conclusions can be drawn from the optimized Jastrows.

For example, the vacancy χ terms are negative, showing that in the QMC simulation
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the electron density on the vacancy site is reduced relative to that in the DFT

simulation. In the case of the interstitials, the χ term is larger on the oxygen

interstitial than it is on bulk Oxygen, suggesting the QMC increases the electron

density over that of the DFT simulation. Both could be taken as suggestions that the

DFT simulation may not be giving an accurate description of the defect electronic

structure — a possibility we will return to later.

6.3.3 Timestep Errors

As explained in Section 3.3, the DMC algorithm is only genuinely exact in the limit

of infinitesimal timestep, otherwise there is a timestep error. However, this is a

relatively well-behaved systematic error that can easily be corrected for. It is of
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course preferable to work with a timestep short enough that the error is negligible

to begin with and can be neglected, but the shorter the timestep, the more steps it

takes for a walker to move a large enough distance through configuration space that

its energy decorrelates. As the timestep is decreased, therefore, the correlation time

increases. The RMS distance diffused by a particle in time T is
√

2dDAT , where

d is the dimensionality of the system, D is the diffusion constant D = 1
2m

(hence 1
2

for electrons in atomic units), and A is the acceptance ratio (close to 0.5 in VMC,

close to 1 in DMC).

If λ is the distance a particle must travel to become decorrelated, which

occurs in n moves or time T = n∆τ for timestep ∆τ , then n can be written

n =
λ2

2dDA∆τ
. (6.40)

Therefore, as long ∆τ is small enough that A ≃ 1, as is always the case in accurate

DMC simulations, ncorr ∝ (∆τ)−1. The computational time to achieve a given

error bar follows the same trend, so a tradeoff must be found between accuracy and

computational feasibility.

Figure 6.11 shows the total energy of an Oxygen atom calculated using the

same Dirac-Fock pseudopotential used in the Alumina calculations, for a range of

timesteps. The behaviour, as expected, is roughly linear in ∆τ and can be accurately

extrapolated to a zero timestep value of −431.425 eV. Figure 6.12 shows the same

graph for the 2×2×2 rhombohedral supercell of Al2O3 (80 nuclei and 384 electrons).

This time, the timestep error per atom converges much more rapidly with decreasing

timestep — representing the greater homogeneity of the solid system compared to

the atomic one. The timestep error at 0.005 au is already only 0.004eV/atom so no

timestep correction need be applied to these results as it would be dwarfed by the

statistical error.

There is no reason to believe timestep error would have a systematic effect

on defect formation energies: given that the cells being compared are very similar

except in the vicinity of one atom, it is likely that the errors almost exactly cancel
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∆τ is varied. With a timestep of ∆τ = 0.005 the timestep error is comparable to
the statistical error on the energy, and is around than 0.025 eV/atom.

apart from a contribution comparable to that of one atom — which again is dwarfed

by the statistical error.

On the evidence of these tests, a timestep of ∆τ = 0.005 au was chosen for

all the simulations presented here, as a balance between accuracy and computa-

tional demands. In the case of the single-atom results, where the timestep error is

more significant, the linear fit shown in Figure 6.11 was used to extrapolate to zero

timestep.

6.3.4 Pseudopotential Localization Error

As discussed in Section 3.3.6, the use of non-local pseudopotentials in DMC intro-

duces an approximation into the otherwise exact DMC scheme, because the nonlocal

operator is applied to the trial wavefunction rather than the true ground state. This

error is known to be relatively small as long as the trial wavefunction is good, but

since it is an uncontrolled approximation it is important to estimate its size. This

can be done by applying the scheme of Casula [24] which forces the estimate of the
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Figure 6.12: Timestep error on the total energy ET of a rhombohedral cell of alumina
as timestep ∆τ is varied. The value chosen for the simulations described here was
0.005 au, which corresponded to a timestep error of less than 0.004 eV/atom with the
normal nonlocal pseudopotential scheme (red). Also shown are results for the Casula
scheme for nonlocal pseudopotentials (blue) - see Section 6.3.4, which demonstrate
a much more significant timestep error. For this reason, the Casula scheme was not
used in this research.

nonlocal pseudopotential energy to be variational with respect to the real energy (or

at least its fixed-node value). In general, use of the Casula scheme raises the total

energy, and the amount by which it does so gives an estimate of the pseudopoten-

tial localization error. From the y-intercepts of the fitted curves in Figure 6.12, we

see that the Casula scheme, when extrapolated to zero timestep, gives an answer

different from the standard nonlocal pseudopotential scheme by 0.49 eV, or 0.24 eV

per formula unit.

However, the Casula scheme comes at the cost of a greatly increased timestep

dependence of the total energy. If we continued to work at the timestep of 0.005 au

which was accurate in the normal method, we incur an unacceptable timestep error

of nearly 2 eV. Because of the ensuing increase in runtime, it was not feasible

to reduce the timestep to a level sufficient to for adequate accuracy in the defect

formation energy calculations when using the Casula scheme. Fortunately, there is
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every reason to expect that when comparing two almost identical cells and using the

standard scheme, almost all of the pseudopotential localization error will cancel in

the comparison, leaving approximately the contribution to the error from one atom.

This, by the above logic, is no more than around 0.05 eV, and will be swamped by

the statistical error. The pseudopotential localization error can therefore safely be

neglected in the defect formation energies.

For thermodynamic formation energy calculations of the bulk materials and

of the elemental forms, which will be discussed shortly, however, which rely on total

energies of the whole cell, pseudopotential localization error should not be neglected

as it skews the results notably. In Section 6.3.5 we include this correction to the

total energy of alumina per formula unit to the formation and atomization energies.

6.3.5 Binding energies and Bulk Properties

To check the accuracy of our description of bulk alumina and to demonstrate the

improvement in accuracy possible in DMC, we have calculated various properties of

bulk alumina and its constituents. In Table 6.3 we show the formation energy of the

atomic form (Al and O atoms) from their standard states (Al metal and O2 gas re-

spectively), plus the formation energy of an AlO dimer and the atomization energies

and formation energies of bulk alumina. While the comparison to experiment is not

an exact one as it neglects all temperature dependence (the experimental results are

for standard pressure and temperature whereas the theoretical ones are effectively

zero temperature) it can be seen that DMC does a very significantly better job of

calculating all these quantities than any of the DFT formulations tested. This allows

us considerable confidence in our description of the solid.

It is also important to verify that the optimized geometry does not differ to

any significant degree within QMC and DFT. If it does, it invalidates our transferral

of DFT defect geometries to QMC. While advances have been made recently in the

QMC calculation of forces [9], no methods are currently available that allow the

accurate determination of forces in large periodic systems. Additionally, due to

170



CHAPTER 6. POINT DEFECTS IN ALUMINA

Method ∆fH0(Al) ∆fH0(O) ∆fH0(AlO) ∆aH0(Al2O3) ∆fH0(Al2O3)

LDA-USP 4.05 3.62 0.91 -37.09 -18.15
LDA-DF 4.10 3.67 1.13 -36.48 -16.95

GGA-USP 3.41 2.82 0.74 -30.22 -14.94
DMC 3.47(1) 2.54(1) 0.68(1) -32.62(3) -18.04(3)
Expt. 3.42 2.58 0.69 -31.95 -17.37

Table 6.3: Formation and Atomization Energies (all in eV). ∆fH0(Al) and ∆fH0(O)
are the formation energies per atom of Al and O atoms in the gas phase.
∆aH0(Al2O3) and ∆fH0(Al2O3) are the atomization and formation (cohesive) en-
ergies per formula unit of alumina. ∆fH0(AlO) is the formation energy of an
Aluminium-Oxygen dimer. Experimental data is obtained from the NIST Webbook
[32].

the computational demands of DMC, it is unfeasible to exhaustively search the

large parameter space provided by the range of possible values of the four geometry

parameters discussed in Section 6.2.1. Consequently only the effect of varying arho

will be investigated here with QMC, as it was the parameter which had the largest

effect on the total energy of the cell, and because the other three do not significantly

change for small variations of arho in DFT.

Figure 6.13 shows the behaviour of the total energy in various methods to

investigate the accuracy of using DFT geometries in QMC. Because QMC cannot at

present perform automatic geometry optimization, one must take a slightly round-

about route to verifying this. Shown in red in Figure 6.13 is the DFT curve of total

energy vs volume, with its minimum at V0 corresponding to the optimized geometry

of Section 6.2.2. The DFT orbitals for each lattice parameter were then used in

QMC simulations, with Jastrow factors which were separately reoptimized for each

system. In green is the curve of ET vs V/V0 obtained within VMC. The indepen-

dent Jastrow optimization renders the determination of a minimum difficult as it

introduces a certain amount of noise that is determined by how good a minimum

the optimization found in each case. This noise is washed out at the DMC level,

however, as the total energy is independent of Jastrow quality in the fixed node ap-

proximation. The DMC curve is shown in blue, and it can be verified both visually

and by fitting a quadratic that the QMC and DFT minima are not at a significantly
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Figure 6.13: Total energies of a rhombohedral 2×2×2 supercell of Al2O3 calculated
using different methods, as a function of primitive cell volume V relative to its DFT
equilibrium value V0. The minima of the curves fall are very close, supporting the
idea that DFT geometry can be accurately used in QMC calculations.

different position, suggesting that it is indeed sensible to use DFT geometries in our

QMC simulations.

6.3.6 Band Gaps in QMC

As a final test of the bulk system, we calculate the band gap within QMC, to

demonstrate its high accuracy for excited state energies. The experimental energy

gap of alumina is difficult to determine for various reasons, but is generally accepted

to be around 8.7 eV at 300 K [55]. It is also known to be quite strongly temperature

dependent. This temperature dependence comes about from the strong dependence

of the band gap on the lattice parameter. Using the parameterized temperature

dependence given in [55] to extrapolate to 0 K gives a zero-temperature band-gap of

9.1 eV, which we take as our experimental value for comparison. There are two main

methods that can be used for the calculation of bandgaps in QMC simulations, each
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with associated problems. The first is to relate the gap to the difference between the

energies of adding and subtracting a particle from the system in its neutral state,

as:

Eg = E(N + 1) + E(N − 1)− 2E(N) , (6.41)

where E(N) is the total energy of some supercell of the bulk and E(N ± 1) are the

total energies of this system with one electron added or subtracted. The latter are

subject to a large finite size effects because this extra or missing electron is squeezed

into the volume of the supercell and repeated periodically. The results converge,

in the limit of an infinite cell, but even in DFT the infinite simulation cell limit is

not the same as the limit of perfect k-point sampling in this case. These finite size

effects are easily demonstrated in a simpler system with a small unit cell, such as

NaCl, where a range of sizes can easily be compared.

In QMC, there is a significant caveat to using Eq. 6.41. In charged periodic

systems evaluated with the Ewald method there is a strong finite size effect in the

Coulomb interaction which does not necessarily cancel between the E(N + 1) and

E(N − 1) systems. Appendix C discusses the embedding of one Ewald calculation

inside another, by calculating the energy of one system embedded inside a larger

but still periodic one and taking the size of the larger system to infinity. This is of

relevance both to the calculation of the energy of the perfect crystal with electrons

added or removed and to the energies of the defect cells when the defect is charged.

The conclusion arrived at after significant algebra is that while in DFT, the energies

of charged systems can be evaluated approximately correctly by including a neutral-

izing background, this is not the case in QMC. In QMC simulations, the electron

positions are explicit and fixed at specific values at any particular timestep, and

this produces an error equivalent in magnitude to the Madelung term of the Makov-

Payne correction but the sign of which depends on whether the charge was added

or taken away relative to the bulk. We thus correct this error by adding ±1
2
qvM ,

the energy of the point charge sitting in the cancelling background. Although in

Eq. 6.41 the two corrections cancel each other exactly, this correction is vital in order
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Method Excitation Charging
LDA-USP 6.78 6.84
GGA-USP 6.31 6.95

DMC 9.4(4) 10.6(5)
Experiment [55] 9.1 -

Table 6.4: Band gaps in DFT and DMC with both the methods described in this
section (in eV). Only the DMC value by the excitation method is in agreement with
experiment.

to calculate a sensible value of EV BM in QMC, which is necessary for the formation

energy of charged defects.

However, there is an alternative route that may be more reliable for calculat-

ing band gaps. We can compare the energy of the normal, neutral system with that

of a version where a promotion has been made in the Slater determinant of single-

particle orbitals, taking an electron from the highest occupied state and moving it

to the lowest unoccupied one. The gap is then simply

Eg = ET (PR)− ET (GS) , (6.42)

where ET (GS) and ET (PR) are the total energies of the system in the ground state

and in the excited state respectively. The disadvantage of this method is that

what one has created, effectively, with the promotion from the valence band to the

conduction band is an exciton, which has some unknown exciton binding energy

that contributes to the energy. However, since the exciton binding energy is likely

to be a small contribution on the scale of the associated statistical error, this is less

likely to be a problem than the Coulomb errors of the previous method.

Table 6.4 shows the band gap calculated using both methods, in DFT (with

LDA and GGA) and in DMC, compared with the experimental value discussed

above. Where excitation gaps are listed in DFT, this is simply the difference in the

eigenvalues between the top of the valence band and the bottom of the conduction

band.

The DFT values are all strongly affected by band gap errors in DFT, and
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the DMC band gap calculated with the charged systems also differs by 1.5 eV from

the experimental value — possibly an uncancelled finite size effect. However, the

value calculated by the promotion method agrees within the DMC error bar with the

experimental value. This gives us confidence in the ability of QMC to give correct

formation energies for defects involving electrons in conduction band-like states.

6.3.7 Formation Energies

Figures 6.14 and 6.15 are the central result of this chapter, showing the results of

our DMC calculations of the formation energies of oxygen vacancies and intersti-

tials. We chose to concentrate on the oxygen defects because it is the diffusion of

oxygen that underlies the so-called ‘conundrum’ relating to the diffusion properties

of alumina [70] — namely that theoretical results for formation energies are difficult

to reconcile with the available experimental data. Most of the high-temperature

properties of alumina (sintering, creep, formation and stability of oxide scales on

metals containing aluminium) depend on the diffusion of oxygen around the lattice,

so in order to try to resolve this ambiguity, we study the oxygen defects with DMC

to determine if the DFT formation energies are accurate.

In the course of generation of trial wavefunctions, we performed a VMC study

of the defects shown here. Because of the difficulty in describing the correlation in

the defect cell accurately, the formation energies in VMC come out many eV too

large. For example, the neutral oxygen defect has ∆HV MC
f = 15.8(6) eV, compared

to the DMC value of 7.36 eV. The VMC simulations were therefore not used for

anything other than the generation of an initial set of walker configurations for the

ensuing DMC simulations.

Figure 6.14 shows the DMC formation energy of the oxygen vacancy com-

pared to the LDA results for the TN-DF pseudopotentials over the range of Fermi

energy for which both are valid (ǫF = 0→ EDFT
g ), with the oxygen chemical poten-

tial chosen to represent that at T = 273 K and p = 1 atm. The effects of changing

µO are described by the ∆µO and ǫF dependence of the values in Table 6.5. As
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Figure 6.14: DMC formation energies, with associated error bars, of the Oxygen
vacancy in its various charge states, compared to LDA calculations with TN-DF
pseudopotentials, with and without bandgap corrections.

shown in Section 6.2.3, the DFT result is essentially independent of the functional

and pseudopotential, unless bandgap corrections are taken into account. The DMC

results, however, differ significantly from these results, coming out notably below

the DFT lines in each case, even if no bandgap correction is included. If it is in-

cluded, the DFT result is pushed higher and the DMC line is beneath the DFT

line by 1 − 2 eV. This does not provide a clear answer to the question of whether

the bandgap correction is a sensible approximation, as it could be interpreted ei-

ther as evidence that it should not be applied (in which case ∆HDFT
f (V 0

O) is close

to ∆HDMC
f (V 0

O)), or that the band gap correction should be applied, but that the

DFT result is uniformly too low across its range. Figure 6.16 shows a combined plot

of both the DFT and DMC results for all the main defect species.

Figure 6.15 shows the formation energies of the oxygen interstitial, and is less

ambiguous as there are no bandgap corrections in this case. Here, the DMC result

is considerably higher than the DFT energies, by over 2 eV. The most important

conclusion one can draw from this is that the DFT-LDA appears to significantly
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Figure 6.15: DMC formation energies, with associated error bars, of the Oxygen
interstitial in its various charge states, compared to LDA calculations with TN-DF
pseudopotentials, with and without bandgap corrections.

overbind the oxygen interstitial. This is in line with both the results for cohesive

energies in Table 6.3, with general experience with DFT, and with previous studies of

defects in DMC. Leung, Needs, et al. [110] found this when studying self-interstitials

in bulk silicon: while LDA and GGA formation energies for the stablest interstitial

were 3.3 and 3.8 eV respectively, the DMC value was 4.9 eV. The same conclusion

was found by Batista et al., who studied a wider range of DFT functionals [15]

and found uniformly that DFT overbound the interstitial. This conclusion is given

further weight by the results presented here. It suggests that in the situation of the

oxygen interstitial, where the local environment, bonding and coordination number

of the interstitial oxygen is extremely different from that of the bulk oxygen atoms,

DFT fails to describe its electronic structure correctly and reports it to be more

stable than it really is. Interestingly, the only functional tested in [15] that was

able to reproduce the DMC results to any degree was a hybrid function including

screened exchange, the Heyd-Scuseria-Ernzerhof (HSE) functional [71, 72, 73].

The other main point to note from these results is that the DFT calculations
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Defect ∆HDFT
f (eV) ∆HDMC

f (eV)

V 0
O 7.38 + ∆µO 7.3(3) + ∆µO

V +1
O 5.03 + ∆µO + ǫF 4.4(3) + ∆µO + ǫF

V +2
O 4.63 + ∆µO + 2ǫF 4.0(5) + ∆µO + 2ǫF

O0
I 6.26−∆µO 8.9(3)−∆µO

O−1
I 8.21−∆µO − ǫF 10.4(4)−∆µO − ǫF

O−2
I 12.26−∆µO − 2ǫF 15.3(6)−∆µO − 2ǫF

Table 6.5: Formation energies of the Oxygen defects in Alumina, in DFT and DMC,
with the dependence on varying chemical potentials µO and µe shown explicitly.
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Figure 6.16: DFT and DMC formation energies of the four main types of intrinsic
defect, showing the effects of DFT overbinding.
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appear to be quite strongly affected by self-interaction errors. The localized charge

density associated with defect states is an obvious situation where this would occur.

If a single electron is localized on a defect, it should not have any contribution to its

Hartree energy from its own charge distribution. In DFT this is not the case, as every

electron feels the same effective potential, to which every electron contributes. This

biases the DFT results upwards for cases where there is a lone localized electron

(such as V 1+
O ), resulting in a smaller region where this is the stablest defect. In

DMC, it is observed that the region of stability for V 1+
O is considerably larger than

in DFT, which we attribute to the correction of the self-interaction error.

Given the success of DMC in achieving highly accurate results for quantities

such binding energies, it is reasonable to expect that its power to improve on DFT

in those situations where DFT is of insufficient accuracy will prove to carry over

to defect formation energies. If the indications provided by both these calculations

and the previous defect studies are correct, then significant amounts of DFT work

on defects may have to be re-thought.
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Conclusions

This thesis has presented work in three separate areas in which there was a demon-

strable need for QMC simulations, whether to act as a benchmark, as a demonstra-

tion and proof of concept, or to investigate the differences between single-electron

and many-electron phenomena. Additionally, the DFT studies, which in many cases

were intended as a preliminary to the QMC simulations and to generate single-

particle orbitals for use in QMC, have in some cases improved on previous similar

calculations or investigated previously unexplored phenomena.

The areas investigated here, while ostensibly separate, are loosely connected

by a number of similar themes. Firstly, they are all strongly affected by finite

size effects. Solutions to the problems of finite size effects fall broadly into two

categories: extrapolation (or interpolation, via certain tricks) to infinite size, or an-

alytic corrections to the results of finite systems, and both are examined here in

the course of the various topics covered. In the case of polarization and localization

lengths, the results do not converge until the approximations used in the derivation

of usable expressions become accurate, and this occurs only slowly with increasing

k-point sampling. Fortunately, the exponential localization of the Wannier functions

ensures that once the system size reaches a certain point, finite size effects on polar-

ization and localization properties decay rapidly. In the Jellium slab calculations,

it is finite-size errors that have rendered previous calculations unreliable. Errors
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arising from the slab-width dependence they easily controlled, and by working at

special slab widths one can negate them. The in-plane effects are more of a chal-

lenge but we have presented a method that we believe has been able to overcome the

worst of the resulting bias. Finally, in the case of point defects, it is the interaction

between periodic replicas of the defect which we must attempt to negate, and we

have presented both an empirical approach to this problem an attempt to correct

the boundary conditions so as to remove the effect in the first place.

The second main linking theme is the benchmarking and testing of Density

Functional Theory. Diffusion Monte Carlo is not, in the near future, likely to be able

to take over from DFT as a powerhouse of large scale electronic structure calculations

— the computing time costs remain simply too high for it to be viable in systems

of the size required to study many phenomena. However, its roles in benchmarking

and checking the accuracy of DFT, investigating the circumstances under which the

approximations and corrections to DFT are valid, and evaluating the success of the

DFT description of many-electron phenomena are well established and represented

here in the motivation of all three studies.

In some ways, the quantum Monte Carlo side of the localization lengths study

represents a something of a dead end, as the phenomenology seen in the correlated

many-body systems was qualitatively similar to that seen in the DFT calculations. If

one were to investigate a metal-insulator transition with quantum Monte Carlo, the

localization length would be infinite on the metallic side and finite on the insulating

side, but we have shown that it is only under certain specific circumstances that

a divergence is seen as the transition is approached from the insulating side, and

most transitions in real materials do not match these circumstances. Additionally,

the determining factor in how the localization length behaves is the sensitivity to

boundary conditions of the single particle orbitals. While correlation via a Jastrow

factor can change the length itself, it cannot change boundary condition sensitivity,

so while it is evaluated with an operator that makes clear that it is inherently a

many-body phenomenon, it nevertheless remains essentially a one-electron property.

In the course of the DFT investigation, we have also examined the properties of the
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localization tensor over a transition. It is normally assumed to diverge as an insulator

to metal transition is approached from the insulating side. However, our results show

that this is not the case: the band insulator to metal transition is normally first order

and not associated with a diverging length scale. We have also identified examples

where the localization length diverges but the system is insulating on both sides

of the divergence. The usefulness of the localization length as an indicator of the

approach of an insulator to metal transition is therefore limited to certain particular

circumstances.

The surface energy of the electron gas investigation represents the most clear-

cut success of this thesis, although it less novel in some ways than the other sections.

It is undoubtedly the most accurate calculation to date of the surface energy of

jellium slabs within DMC, and corrects most of the errors that have reduced the

accuracy of previous calculations below the level usually expected of DMC. The

only uncontrolled error remaining that could affect the surface energy values is

a systematic variation of fixed-node error with slab width — which there is no

reason to believe exists. Recent advances in DMC techniques might allow these

calculation to be made even more accurate, and reduce the error bars that result

from uncertainty on the fitting parameters of the extrapolation. These would include

twist-averaging to eliminate the independent-particles finite-size error, inclusion of

backflow to further reduce the fixed-node error, and a full treatment of the long-

range kinetic energy finite size error in the manner of Ref. [33]. These additions do

not necessarily require any advance in computing power to make them feasible, but

would require some theoretical work in the case of backflow, to find a compact way

of parameterizing a form of inhomogeneous backflow suitable for slab systems.

Finally, the investigation of point defects in alumina has reached a number of

interesting conclusions: previous work within DFT has been found to have neglected

the crucial effects of the interactions of the periodic replicas of charged defects, and

also to have treated band gap corrections with a scheme only really applicable to

semiconductors and not valid for the tightly-bound localized orbitals of an ionic

metal oxide. Our calculations of the full spectrum of defect formation energies with
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respect to the chemical potentials of the components reveals that there is a richer

spectrum of possible charge states than previously thought, as past calculations

reported the higher charge states as over-stabilized for the reasons stated. Within

QMC, we have overcome the hurdles to successful calculation of defect properties,

and presented the first DMC calculation of the formation energy of charged defects.

Our results show intriguing differences relative to the DFT energies, and suggest that

in agreement with the work of Leung, Hood, Needs et al., overbinding of solids within

the LDA leads to significant overestimates of the formation energies of vacancies and

underestimates of the formation energies of interstitials.

Further work would be of value in a number of areas of this study of defect

in metal oxides, with both computational methods used. Following up the work

on boundary condition corrections by implementing it in a DFT code inside the

SCF cycle could allow defect formation energies and geometries to be calculated

without needing to apply extrapolative correction formulae. Further work, perhaps

using linear scaling DFT [152] to simulate larger and larger systems, could be used

to determine whether the method of varying the cell shape as well as size produces

reliable results when extrapolating to infinite size. Comparison of other oxides would

also be profitable — and this is indeed planned. TiO2 in its rutile structure is one

obvious candidate, if problems with the representation of its pseudopotential can

be overcome. Comparison of a number of oxides may make it possible to determine

more definite answers to two remaining questions, namely whether the overbinding

suggested by the differences between the DMC and the DFT is a systematic effect,

and whether or not band gap corrections should be applied and to what extent. If

the former is true, it may suggest that DFT in the formulation used here may in

many cases lack the accuracy required to be a useful predictive tool in the field of

point defects in ionic crystals.
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The Kinetic Energy Term in DMC

Finite Size Errors

In this appendix, we derive an expression for the long-range kinetic energy terms

of the finite size error in a jellium slab calculation of the type described in Chapter

5. The derivation follows a similar route to a recent paper by Chiesa [33], which

examined the homogeneous electron gas. Here we use the same approach, employing

the form of the plasmon normal modes presented by Wood for a jellium slab system

[180].

Within the inhomogeneous Random Phase Approximation [60] we can de-

scribe the ground state as the product of a short range part and the long-ranged

collective motion of the plasmon normal modes:

Ψ = Ψs exp

[
−1

2

∑

i,j

u(ri, rj) +
∑

i

χ(ri)

]
. (A.1)

We define the transform of the u term:

uG,G′ =

∫
d3r

∫
d3r′ u(r, r′)e−iG.re−iG′.r′ , (A.2)
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u(r, r′) =
1

Ω2

∑

G,G′

uG,G′eiG.reiG′.r′ , (A.3)

and of the chi term:

χG =

∫
d3rχ(r)e−iG.r , (A.4)

We can now express the Jastrow Factor in terms of components of the momentum

density ρG =
∑

i e
iG.ri:

Ψ = Ψs exp

[
− 1

2Ω2

∑

G,G′

uG,G′

∑

i

eiG.ri

∑

j

eiG′.rj +
1

Ω

∑

G

χG

∑

i

eiG.ri

]
, (A.5)

Ψ = Ψs exp

[
− 1

2Ω2

∑

G,G′

uG,G′ρGρG′ +
1

Ω

∑

G

χGρG

]
, (A.6)

where the sums are over all reciprocal lattice vectors G commensurate with the

periodically repeated simulation cell.

The kinetic energy can be written as TN = −1
4

∑N
j=1

〈
∇2

j ln Ψ
〉

by Green’s

identity, so applying this to the above wavefunction gives us

T = Ts −
1

4

〈
∑

k

∇2
rk

(
−1

2Ω2

∑

G,G′

uG,G′

(∑

i

eiG.ri
)(∑

j

eiG′.rj
)

(A.7)

+
1

Ω

∑

G

χG

∑

i

eiG.ri

)〉
. (A.8)

where Ts is the kinetic energy associated with the short-ranged part of the wavefunc-

tion, Ψs, and the rest is the kinetic energy associated with the long-ranged Jastrow
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factor. The Laplacian acting on the ρGρG′ term gives:

∑

k

∇2
rk

∑

G,G′

uG,G′

(∑

i

eiG.ri
)(∑

j

eiG′.rj
)

=
∑

k

∑

G,G′

uG,G′

[
−G2eiG.rk

(∑

j

eiG′.rj
)
−G′2eiG′.rk

(∑

i

eiG.ri
)

+ 2iGeiG.rk .iG′eiG′.rk

]

=−
∑

G,G′

uG,G′

[
(G2 +G′2)ρGρG′ + 2G.G′ρ(G+G′)

]

(A.9)

According to RPA theory, the χ term is expected to cancel out the effect of the u

term on the density, and can be written as

χ(r) =

∫
d3r′u(r, r′)〈ρ(r′)〉 , (A.10)

so its Fourier transform can be expressed in terms of that of the u term.

χG =

∫ ∫
d3r d3r′ u(r, r′) 〈ρ(r′)〉 eiG.r

=

∫ ∫
d3r d3r′

1

Ω2

∑

G′′,G′

uG′′,G′ei(G′′−G).r eiG′.r′ 〈ρ(r′)〉

=
1

Ω

∑

G′

uG,G′〈ρG′〉 .

(A.11)

The contribution of the long range Jastrow factor to the kinetic energy in the in-

homogeneous system can therefore be expressed in terms of the density and the u
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terms:

T = Ts −
1

4

〈
1

2Ω2

∑

G,G′

uG,G′

[
(G2 +G′2)ρGρG′ + 2G.G′ρ(G+G′) − 2G2ρG〈ρG′〉

]〉

= Ts −
1

8Ω2

〈
∑

G,G′

uG,G′

[
(G2 +G′2)

(
δρGδρG′ − 〈ρG〉〈ρG′〉

)
+ 2G.G′ρ(G+G′)

]〉

=Ts −
1

8Ω2

∑

G,G′

uG,G′

[
(G2 +G′2)

(
〈S(G,G′)〉 − 〈ρG〉〈ρG′〉

)
+ 2G.G′〈ρ(G+G′)〉

]

(A.12)

As an aside, we note at this point that in a homogeneous system, where ρ(r) = const,

u(r, r′) = u(r− r′) and S(r, r′) = S(r− r′), we have the following relations:

〈ρ(G)〉 =
N

Ω
δG,0

u(G,G′) = ΩδG,−G′

∫
dr u(r)e−iG.r = ΩδG,−G′u(G)

S(G,G′) = ΩδG,−G′

∫
drS(r)e−iG.r = ΩδG,−G′S(G)

so we could recover the radially symmetric form of T as described in [33]:

T = Ts −
1

4Ω

∑

G 6=0

NG2uG

[
S(G)− 1

]
(A.13)

As it is not clear in the original paper, we discuss briefly here the derivation of the

homogeneous finite size error term itself here, to compare it with the derivation of

the inhomogeous version.

The known behaviour of S(k) suggests that the dominant contribution to the

finite size error will come, in the limit of k → 0, from the “-1” term as S(k) → 0,

so to find the kinetic energy finite size error we define

f(k) =
1

4
k2u(k) .

The finite size error on T is defined as the difference between what the value in the
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limit of infinite system size, where the sum becomes an integral, and the value in

the finite system where it remains a finite sum with the G = 0 term excluded:

∆TN =
1

(2π)3

∫
f(k)dk− 1

Ω

∑

G 6=0

f(G) . (A.14)

We can express the second term by using the Poisson sum formula
∑

L f̃(L) =

1
Ω

∑
G f(G) and splitting off the L = 0 and G = 0 terms from the sums, so as to

write the sum over G 6= 0 as

1

Ω

∑

G 6=0

f(G) =
∑

L 6=0

f̃(L) + f̃(0)− f(0)

Ω
(A.15)

The integral term is by definition equal to f̃(0), so comparing the last two equations

leaves

∆TN =
f(0)

Ω
−
∑

L 6=0

f̃(L) (A.16)

In the uniform electron gas, we know from the RPA that, using atomic units and

thus omitting the physical constants, the u term of the Jastrow factor becomes

u(k) =
4π

ωpk2
(A.17)

in the small-k limit. The plasma frequency ωp is given by ω2
p = 4πn in atomic units,

so we have

f(k) =
1

4
k2u(k) =

ωp

4n
(A.18)

For the first order correction we neglect the
∑

L 6=0 terms and the correction is simply

f(0)

Ω
=

ωp

4N
(A.19)

and the total kinetic energy finite size correction is, as in Chiesa’s paper:

∆TN =
ωp

4N
(A.20)
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Application to Jellium Slab Bulk Plasmons

Now we switch back to the inhomogeneous case and return to attempting to evaluate

Eq. A.12 for a specific form of u. Previous work by Wood [178] gives us the long

ranged part of the u term in Jellium slabs, obtained from the plasmon normal modes.

It takes the form

ubulk(r, r
′) =

4π

ωp

1

L2s

∑

G

4

G2
cosG||.(r|| − r′||) sinGzz sinGzz

′

×Θ(z)Θ(s− z)Θ(z′)Θ(s− z′) ,
(A.21)

where Θ(z) is the step function and G = (G||, Gz), with G|| =
2π
L

(n,m) for n,m >=

0 and Gz = pπ
s

for p > 0.

This form depends only on the in-plane separation r||−r′|| not on the absolute

in-plane positions r|| and r′||, but it does depend explicitly on z and z′. It can

therefore be transformed as

ubulk(G||; kz, k
′
z) =

∫

L2

d2r||

∫
dz

∫
dz′ u(r||; z, z

′)eiG||.r||eikzzeik′
zz′ . (A.22)

The integrals are conveniently separable, leading to

u(G||; kz, k
′
z) =

4π

ωps

∑

Gz

4

G2
|| +G2

z

P̃ (Gz, kz)P̃ (Gz, k
′
z) , (A.23)

where P (Gz, z) = sinGzzΘ(z)Θ(s− z) and

P̃ (Gz, kz) =

∫ ∞

−∞
P (Gz, z) eikzzdz , (A.24)

which can be evaluated with the convolution theorem:

F
[
sinGzz

]
=

1

2i
[δ(kz −Gz)− δ(kz +Gz)]

F [Θ(z)Θ(s− z)] =
1

ikz

[
eikzs − 1

] (A.25)
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giving

F [sinGzzΘ(z)Θ(s− z)] =

∫ ∞

−∞

1

2i

[
δ(pz −Gz)− δ(pz +Gz)

]ei(kz−pz)s − 1

i(kz − pz)
dpz ,

(A.26)

and thus

P̃ (kz, Gz) =
1

i

[
e−i(kz−Gz)s/2sinc((kz −Gz)s)− e−i(kz+Gz)s/2sinc((kz +Gz)s)

]

(A.27)

We can therefore write the full Fourier transform of the Jastrow as

u(G||; kz, k
′
z) =

e2

~ωpǫ0

1

s

∑

Gz

4

G2
|| +G2

z

P̃ (kz, Gz)P̃ (k′z, Gz) (A.28)

To use Chiesa’s method to find the kinetic energy finite size error ∆TN we need to

evaluate, according to Eq. A.12 and Eq. A.14,

∆TN =− 1

8

∫
d2k||
(2π)2

∫
dkz

2π

∫
dk′z
2π

u(k||, kz, k
′
z)

×
[
(2k2
|| + k2

z + k′2z )〈S(k||, kz;−k||, k
′
z)〉+ 2(−k2

|| + kzk
′
z)〈ρ(0, kz + k′z)〉

]

−− 1

8

1

L2

∑

G|| 6=0

∫
dkz

2π

∫
dk′z
2π

u(G||, kz, k
′
z)

×
[
(2G2

|| + k2
z + k′2z )〈S(G||, kz;−G||, k

′
z)〉+ 2(−G2

|| + kzk
′
z)〈ρ(0, kz + k′z)〉

]

≃− 1

8

1

L2

∫
dkz

2π

∫
dk′z
2π

u(0, kz, k
′
z)
[
(k2

z + k′2z )〈S(0, kz; 0, k
′
z)〉

+ 2kzk
′
z〈ρ(0, kz + k′z)〉

]
.

(A.29)
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By inserting the Fourier transform of u, we get

∆TN = −1

8

〈
1

L2

∫
dkz

2π

∫
dk′z
2π

4π

ωps

∑

Gz

4

G2
z

P (kz, Gz)P (k′z, Gz)
[

(A.30)

(k2
z + k′2z )ρ(0, kz)ρ(0, k

′
z) + 2kzk

′
zρ(0, kz + k′z)

]〉
(A.31)

which, on reinserting the densities as ρ(0, kz) =
∑

i e
ikzzi becomes:

∆TN =
−1

2ωp

〈
1

sL2

∑

Gz

1

G2
z

(∑

i

∫
dkz

2π
k2

zP̃ (kz, Gz)e
ikzzi

∑

j

∫
dk′z
2π

P̃ (k′z, Gz)e
ik′

zzj

+
∑

j

∫
dk′z
2π

k′2z P̃ (k′z, Gz)e
ik′

zzj

∑

i

∫
dkz

2π
P̃ (kz, Gz)e

ikzzi

+2
∑

i

∫
dk′z
2π

k′zP̃ (k′z, Gz)e
ik′

zzi

∫
dkz

2π
kzP̃ (kz, Gz)e

ikzzi

)〉

(A.32)

Transforming the P̃ ’s back again and using F [kf̃(k)] = i∂f
∂x

gives

∆TN =
ωp

2nL2s

〈∑

Gz

1

G2
z

[
2

(
∑

i

(G2
z) sinGzziΘ(zi)Θ(s− zi)

)

×
(
∑

j

sinGzzjΘ(zj)Θ(s− zj)

)

+2
∑

i

(iGz cosGzzi) (iGz cosGzzi) Θ(zi)Θ(s− zi)
] 〉

(A.33)

which can be written as

∆TN =
ωp

2N

〈∑

Gz

(
∑

i

2(sin2Gzzi − cos2Gzzi) + 2
∑

i6=j

sinGzzi sinGzzj

)〉

=
ωp

2N

〈∑

Gz

∑

i

(
4 cos 2Gzzi + 2

∑

j 6=i

sinGzzi sinGzzj

)〉 (A.34)
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The pair density ρ(r, r′) is defined by

ρ(r, r′) =

〈 ′∑

i,j

δ(r− ri)δ(r
′ − rj)

〉
(A.35)

and its transform in the same system as used previously is

ρ(k,k′) =

∫ ∫
drdr′

〈 ′∑

i,j

δ(r− ri)δ(r
′ − rj)e

−ik.re−ik′.r′
〉

=

〈 ′∑

i,j

e−ik.rie−ik′.rj

〉

(A.36)

so we can write ∆N as

∆TN =
~ωp

2N

〈∑

Gz

4 [ρ(2Gz) + ρ(−2Gz)] (A.37)

+2 [ρ(Gz, Gz)− ρ(Gz,−Gz)− ρ(−Gz, Gz) + ρ(−Gz ,−Gz)]

〉
(A.38)

This gives the scaling with N observed in Chapter 5: ∆TN ∝ 1/N . While the

remaining terms involving transforms of the pair density could, in principle, be

evaluated in QMC, this would be a challenging calculation and is unnecessary in the

context examined here.
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Appendix B

Correcting Periodic Boundary

Conditions in Defect Cells

In an ideal world, we would be able, when estimating formation energies of charged

defects, to calculate of the correct energy of a single supercell of the defect system

embedded in an infinite lattice of copies of the corresponding supercell of perfect

crystal, with all the interactions between electrons and ions taking the correct form,

whether they result from localized charges or periodic ones. This aim is made

difficult by the fact that this system contains ions and contributions to the charge

density that are repeated periodically, and ions and charge density that are localized

at the defect site. A localized ‘ion’ may be a real one (ie an interstitial), or an

oppositely-charged version of one present in the perfect crystal calculation, there to

represent a vacancy, and the overall change in charge density may be negative or

positive depending on the charge on the defect. In this Appendix, we attempt to

formulate the energy functional for the defect cell in such a way that the correct

boundary conditions are applied to each component of each contribution to the

energy, so as to arrive at the correct energy. We assume that it is possible to

carry out accurate calculations of the density nperf(r) and Hartree potential V perf
H (r)

associated with the perfect crystal, and store this for use in the defect calculation.
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We write the total energy of the defect cell in terms of the density n(r) as

ET (def)[n] = Ts[n] + Exc[n] + EH[n] + Epsp[n] + EII (B.1)

where all the terms have their standard meaning. We assume that in a calculation of

a periodically repeated defect, we can obtained the correct density, but that because

we were using the wrong interaction in parts of the functional, we obtain the wrong

energy. To get the correct energy from this density, we can take the output density

from the periodic defect calculation, and combine it with the perfect crystal density

to get the correct form of the functional. Changing the boundary conditions of

the interaction used for parts of the density and some of the atoms will change the

Kohn-Sham effective potential in the cell and thus the single particle eigenvectors,

so all the contributions except the exchange-correlation energy will change to some

degree. We address each contribution term by term.

We write the electron density in the defect cell as ndef(r) = nper(r) + nloc(r),

where nloc(r) is the difference in charge density between the perfect supercell and

the defect supercell. The defect cell is imagined as containing periodic versions of all

the same ions in the perfect cell, and then added ones or subtracted ones, where a

subtracted ion which was originally of pseudo-charge qα and pseudopotential Vloc,α(r)

is represented by an ion at the same point with charge−qα and pseudopotential

−Vloc,α(r) to cancel it out.

The periodic charge density, which can be expressed in Fourier components

n(G), produces a potential V H
per(r) given by

V H
per(r) =

∑

G 6=0

4πn(G)

ΩG2
eiG.r , (B.2)

while the localized charge density produces a Hartree potential V H
loc(r) given by

V H
loc(r) =

∫

a.s.

n(r′)d3r′

|r− r′| . (B.3)
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This potential extends over all space, but since in practice the density change nloc(r)

is confined to one supercell, the integral need only be over that cell.

The full Hartree Energy of one defect cell is given by the sum of the interac-

tions between all the contributions to V H(r) and n(r):

EH[n] =
1

2

∫

cell

V H
per(r)nper(r)d

3r +
1

2

∫

cell

V H
loc(r)nloc(r)d

3r +

∫

cell

V H
per(r)nloc(r)d

3r

=
1

2

∑

G 6=0

4πnper(G)nper(−G)

ΩG2
+

1

2

∫

cell

∫

cell

nloc(r
′)nloc(r)d

3r′

|r− r′| d3r

+

∫

cell

∑

G 6=0

4πnper(G)eiG.r

ΩG2
nloc(r) ,

(B.4)

The first term has already been calculated in the perfect crystal calculation and

is standard. For the second term, the localization of the charge density means a

cutoff Coulomb interaction can be used, with a radius R greater than the distance

between periodic images, and by padding a larger version of the density grid with

zeros the integral can still be evaluated with Fourier transform methods. The final

term has been written as the interaction of the localized charge with the periodic

potential rather than vice versa in order that it can be evaluated as an integral

within one unit cell rather than all space. Then, because the potential from the

perfect crystal only exists on the G-vectors of the original cell, it does not matter

that the Fourier transform of nloc(r) exists for all values of k, so this contribution

can easily be evaluated with the standard Fourier methods of calculating Hartree

energies in periodic systems.

Comparing this correct energy with what we would actually have evaluated

in a calculation of a periodically repeated defect, gives us a correction to the Hartree

Energy of the defect cell of

∆EH[n] =
1

2

∫

cell

∫

cell

nloc(r
′)nloc(r)

|r− r′| d3r′d3r− 1

2

∑

G 6=0

4πnloc(G)nloc(−G)

ΩG2
(B.5)
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Alternatively, we could use the corresponding formulae for the Hartree potential to

correct the effective potential inside the SCF loop of a calculation.

We now address the contribution to the energy from the intereaction of the

pseudopotential and the density. A periodically repeated ion of species α at posi-

tion Rα is represented by a pseudopotential with valence charge Zα, the local part

of which is divided into Coulombic (Zα/r) and non-Coulombic parts. The non-

Coulombic part is stored internally in a program such as CASTEP as a spherical

Fourier series Vnc,α(q). The full pseudopotential is reconstructed using the formula:

Vpsp,α(q) = 4π

(
Vnc,α(q)− Zα

q2

)
, (B.6)

where the 4π has been taken outside the brackets merely as a convention. The

local part of the pseudopotential of this ion is then interpolated onto the grid of

G-vectors of the unit cell, omitting the G = 0 term of the Coulombic part and

treating it separately, giving:

V psp
per,α(r) = 4π

(
∑

G

Vnc,α(G)eiG.(r−rα) −
∑

G 6=0

Zα

G2
eiG.(r−rα)

)
. (B.7)

So including the structure factor for all the ions I of each species, the total local

pseudopotential is

V psp
per (r) =

∑

α

4π

(
∑

G

Vnc,α(G)
∑

I

e−iG.RI,αeiG.r −
∑

G 6=0

Zα

G2

∑

I

e−iG.RI,αeiG.r

)
,

(B.8)

and the electron-ion interaction energy is

Epsp
per (r) =

∫

cell

∑

α

∑

G 6=0

4π

(
Vnc,α(G)− Zα

G2

)(∑

I

e−iG.RI,α

)
eiG.r nper(r) d3r

+
∑

α

Vnc,α(0)
Ne

Ω
. (B.9)

If we want to calculate the contribution of the localized ions, we need equations in
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real space, we would need Vpsp,α(r), and we must reconstruct this from the known

Vpsp,α(q):

Vpsp,α(r) =
1

(2π)3

∫
4π

(
Vnc,α(q)− Zα

q2

)
eiq.r d3q

=
4π

(2π)3

∫ ∞

0

(
Vnc,α(q)− Zα

q2

)
4πq2 sin(qr)

qr
dq

. (B.10)

We then split this into a short range part, from q = qmaxto q =∞, and a long range

part from q = 0 to q = qmax:

Vpsp,α(r) =
(4π)2

(2π)3

[∫ qmax

0

Vnc,α(q)
q sin(qr)

r
dq − Zα

∫ qmax

0

sin(qr)

qr
dq

+

∫ ∞

qmax

(
Vnc,α(q)− Zα

q2

)
q sin(qr)

r
dq

]
.

The final term is zero as the pseudopotential has been constructed so that it is

smooth around r = 0, so the non-Coulombic part must exactly cancel the diver-

gence of Zα/r at small r and thus large q, so the two parts cancel each other

exactly. The second term is a Sine Integral Si(qmax) which is easily calculated with

standard algorithms, and the first term can be evaluated numerically, so Vpsp,α can

be accurately reconstructed. We can then interpolate this on to the real space grid

to get the localized version of the total ionic pseudopotential:

V psp
loc (r) =

∑

α

∑

I

Vpsp,α(|r− rI |) , (B.11)

and the energy is

Epsp
loc =

∫

cell

∑

α

∑

I

Vpsp,α(|r− rI |)nloc(r)d
3r . (B.12)

The boundary-condition correction to Epsp is thus obtained by considering the dif-
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ference between Eq. B.9 and the above:

∆Epsp =

∫

cell

V psp
loc (r)nloc(r) d3r−

∫

cell

V psp
per (r)nloc(r) d3r , (B.13)

where we only consider nloc(r) since the contribution from the periodic part of the

density was already calculated correctly in the original calculation by the same

argument as for the Hartree energy.

Finally we come to the ion-ion interaction. Within periodic boundary con-

ditions, the interaction between ions (or pseudo-ions) of species α, β with charges

Zα, Zβ is given by the Ewald interaction

EII
per =

1

2

∑

α,β

∑

I,J 6=I

ZαIZβJ(vEW (Rα −Rβ)− vM) , (B.14)

while for ‘localized’ ions it is simply the Coulomb form:

EII
loc =

∑

α,β

∑

I,J 6=I

ZαIZβJ
1

|Rα −Rβ|
. (B.15)

Hence to correct the interactions we simply find the difference:

∆EII = EII
loc −EII

per (B.16)
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Appendix C

Embedding of Ewald Calculations

When we simulate a ‘charged’ periodic system in quantum Monte Carlo, we are

necessarily including a neutralizing uniform background in our calculation, or the

total Ewald energy would be infinite. The requirement of strict neutrality over a

unit cell of volume Ω demands that each and every charge q be accompanied by a

background charge density −q/Ω over the whole cell. If, on the other hand, what

we really mean to simulate is a single charged cell embedded in an infinite periodic

lattice of neutral copies of an uncharged version, then the cancelling background of

the extra charge can legitimately be imagined as extending over a much larger, or

potentially infinite volume, which will produce a significantly different energy. The

error of confining the background to a single simulation cell can be thought of as a

finite size error

Here we shall imagine a very large cell, which we shall call the supercell,

composed of M ×M×M copies of the simulation cell. Each cell contains N charges

qi at positions ri. In one of these cells, we also either place an extra charge qP

at position rP , which may represent an extra electron, or we take away one of the

originalN charges qG from position rG. We will treat these two situations separately,

as contrary to what one might at first imagine, the situation of removing a charge is

not equivalent to adding an extra charge of −q on top of one of the original charge.

Apart from anything else, that would lead to an infinite energy.
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We want to know the error we are making by using the Ewald method on the

‘charged’ cell, so we compare two ways of evaluating the energy of an embedded ver-

sion of the defect cell: a) by treating the whole supercell as periodic and evaluating

the Ewald energy for the whole system; and b) by treating the ‘charged’ simulation

cell as periodic, and then treating the neutral cell as periodic, and adding the energy

of one of the charged simulation cells to (M3 − 1) of the neutral simulation cells.

We label the real and reciprocal lattice vectors and volume of the (smaller)

simulation cell R1, G1, Ω1 respectively, while those of the (larger) supercell are R2,

G2, Ω2. These are related in that Ω2 = M3Ω1, that the set of vectors {R1} contains

{R2} as a subset, and that the set of vectors {G2} contains {G1} as a subset. The

copies of the simulation cell contained within the supercell are at positions labelled

by Rs.

Each charge q on the ‘1’ lattice has a cancelling background of −q/Ω1, so the

charge distribution is

ρ1(r) =
−q
Ω1

+
∑

R1

qδ(r−R1) (C.1)

over all space. This can be inserted into Poisson’s Equation to give an expression

involving the Ewald potential

∇2vEw1
(r) = −4πρ1(r) , (C.2)

which can be Fourier transformed to give

ṽEw1
(G1) =






0 G1 = 0

4π

Ω1G2
1

G1 6= 0
. (C.3)

In practice we use the Ewald method to split the badly behaved real space

form of vEw1
(r) into a part that converges rapidly in real space and a part that
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converges rapidly in reciprocal space, giving the commonly-used formula:

vEw(r) =
4π

Ω

∑

G 6=0

exp
(
−G2

4κ2 + iG.r
)

G2
− π

κ2Ω
+
∑

R

erfc(κ|r + R|)
|r + R| (C.4)

for the potential of a lattice of point charges and their cancelling backgrounds,

assuming one charge is at the origin.

We will be distinguishing between the potential produced by particles re-

peated in each copy of the simulation cell, vEw1
(r), and the potential produced by

particles repeated only in each copy of the whole simulation cell, vEw2
(r). It is in-

tuitive but important to note that the potential felt on the simulation cell lattice

is the same as the potential felt on the supercell lattice but copied to each of the

individual copies of the simulation cell lattice. To show this, we write

∑

Rs

vEw2
(r + Rs) =

4π

M3Ω1

∑

G2 6=0

exp
(
−G2

2

4κ2 + iG2.r
)

G2
2

∑

Rs

exp(iG2.Rs)−
∑

Rs

π

κ2M3Ω1

+
∑

Rs

∑

R2

erfc(κ|r + R2 + Rs|)
|r + R2 + Rs|

.

(C.5)

The vectors in {R2} + {Rs} span all the vectors in {R1}, so the final term can be

replaced with a sum over {R1}, reducing it to the equivalent term of vEw1
(r). There

are M3 vectors in {Rs}, so the middle term is just π
κ2Ω1

. Finally, for each G2 which

is not a member of {G1}, the sum over Rs gives zero, whereas if it is a member of

{G1}, each eiG2.Rs term is 1 and the sum is M3, so the first term can be rewritten

in terms of a sum over G1, showing that

∑

Rs

vEw2
(r + Rs) = vEw1

(r) (C.6)
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The N particles in the uncharged simulation cell create a total potential of

φEw1
(r) =

N∑

i

qivEw1
(r− ri) , (C.7)

which is periodic and already includes the potential from the full set of M3N parti-

cles in the simulation cell as the periodic replicas of the M particles in the simulation

cell.

If we now consider adding an extra charge, at position rP , to one (and only

one) of the simulation cells in the large supercell, the extra electron, we add an

additional potential of

φEw2
(r) = qP vEw2

(r− rP ) . (C.8)

Each particle in the simulation cell feels the potential due to everything except itself,

so the potential φ̄i(ri) felt by particle i can be written

φ̄i(ri) = lim
r→ri

(
φEw1

(r) + φEw2
(r)− qi

|r− ri|

)

= lim
r→ri

(
N∑

j

vEw1
(r− rj) + qP vEw2

(r− rP )− qi
|r− ri|

)
.

(C.9)

For all particles i except the extra one P , we have

φ̄i(ri) = qivM1
+

N∑

j 6=i

qjvEw1
(ri − rj) + qP vEw2

(ri − rP ) , (C.10)

while for particle P itself we have

φ̄P (rP ) = qP vM2
+

N∑

j

qjvEw1
(rP − rj) . (C.11)
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In both cases, the Madelung potential

vM = lim
r→0

(
vEw(r)− 1

r

)

=
4π

Ω

∑

G 6=0

exp
(
−G2

4κ2

)

G2
− π

κ2Ω
+
∑

R 6=0

erfc(κ|R|)
|R| − 2κ√

π
,

(C.12)

is the potential felt by the particle due to its cancelling background and all the

periodic replicas of itself. The value of vM is dependent on cell size and geometry

but is usually negative as the particle is always nearer to a comparable amount of

its cancelling background, which is of the opposite sign, than it is to its nearest

neighbour replicas. In highly elongated cells this is no longer the case.

The total Ewald interaction energy in the supercell is the sum of the energies

of all the M3 copies of the original arrangement of charges, plus the energy of the

extra one. We assume here that the N electrons are in the same positions each cell,

i.e. at ri + Rs. In reality they would be in different places in each cell, both due to

the fact that they are separate particles in the first place and that they will move

to screen the charge of the charged cell. However, in a QMC simulation, this is the

approximation we are forced to make, and for a large cell it will not be a large error.

In this approximation we get:

UEw =
1

2

∑

Rs

N∑

i

qiφ̄i(ri + Rs) +
1

2
qP φ̄P (rP )

=
1

2
M3

N∑

i

q2
i vM1

+
1

2

∑

Rs

N∑

i

(
N∑

j 6=i

qiqjvEw1
(ri + Rs − rj)

+ qiqP vEw2
(ri + Rs − rj)

)
+

1

2
q2
P vM2

+
1

2

N∑

j

qP qjvEw1
(rP − rj)

(C.13)
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Using Eq. C.6 and remembering that vEw1
(r + Rs) = vEw1

(r) we can write this as

U sup
Ew =

M3

2

N∑

i

q2
i vM1

+
1

2
q2
P vM2

+
M3

2

N∑

i

N∑

j 6=i

qiqjvEw1
(ri−rj)+

N∑

i

qiqP vEw1
(ri−rP )

(C.14)

If we had used the Ewald interaction on the simulation cell to calculate the

energy, effectively assuming that qP is repeated in every cell, we would have had,

for one cell:

U sim
Ew =

1

2

N∑

i

q2
i vM1

+
1

2

N∑

i

N∑

j 6=i

qiqjvEw1
(ri − rj) +

1

2
q2
P vM1

+
N∑

i

qiqP vEw1
(ri − rP )

(C.15)

whereas in the neutral cell we would simply have had

Uneut
Ew =

1

2

N∑

i

q2
i vM1

+
1

2

N∑

i

N∑

j 6=i

qiqjvEw1
(ri − rj) (C.16)

Hence, the error we would have made making by neutralizing qP over Ω1

rather than Ω2 is

∆UEw = U sup
Ew −

(
U sim

Ew + (M3 − 1)Uneut
Ew

)
(C.17)

which, after combining Eqs. C.14, C.15, C.16, almost entirely cancels to give

∆UEw =
1

2
q2
P (vM2

− vM1
) (C.18)

If we let the supercell size tend to infinity, vM2
vanishes and the error is simply one

Madelung energy of the small cell:

∆UEw = −1

2
q2
P vM1

(C.19)

The derivation in the case where we have removed a charge proceeds very

similarly except for the sign change when the qP terms are replaced with qG ones
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(because they now represent interactions which are no longer there relative to the

neutral state). If φ̄G represents the potential missing from the supercell because of

the removed charge, then the full Ewald energy of the charged cell is

U sup
Ew =

1

2

∑

Rs

N∑

i

qiφ̄i(ri + Rs)−
1

2
qGφ̄G(rG)

=
1

2
M3

N∑

i

q2
i vM1

+
1

2

∑

Rs

N∑

i

(
N∑

j 6=i

qiqjvEw1
(ri + Rs − rj)

− qiqGvEw2
(ri + Rs − rj)

)
− 1

2
q2
GvM2

− 1

2

N∑

j

qGqjvEw1
(rG − rj)

=
1

2
M3

N∑

i

q2
i vM1

− 1

2
q2
GvM2

+
1

2
M3

N∑

i

N∑

j 6=i

qiqjvEw1
(ri − rj)

−
N∑

i

qiqGvEw1
(ri − rG)

(C.20)

Similarly for the smaller simulation cell:

Usim
Ew =

1

2

N∑

i

q2
i vM1

+
1

2

N∑

i

N∑

j 6=i

qiqjvEw1
(ri − rj)−

1

2
q2
GvM1

−
N∑

i

qiqGvEw1
(ri − rG)

(C.21)

so that the difference ∆UEw = Usup
Ew − (Usim

Ew + (M3 − 1)Uneut
Ew ) becomes

∆UEw =
1

2
q2
G (−vM2

+ vM1
) (C.22)

and in the limit as M →∞ we get

∆UEw =
1

2
q2
GvM1

(C.23)

The conclusion is thus that removing an electron causes a Madelung error of opposite

sign to adding one, whereas adding a positive charge would have caused an error of

the same sign. This emphasises that unlike in the case of considering purely charge

densities, we cannot cancel the effects of a point charge of one sign by placing a
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point charge of the opposite sign on top of it (this situation would make no physical

sense anyway)

The assumption underlying both of these derivations is that the copies of the

neutral cell nearby to the charged cell have their N charges in positions comparable

to those in the charged cell. This is equivalent to saying that the charges in the

charged cell do not move to screen the effect of the extra charge qP or removed

charge qG. In something like a charged version of a perfect crystal calculation,

where the charge is spread out over the whole simulation cell, there is not very

much to screen and this will probably be quite close to true, but in a defect with a

strongly localized charge, it will certainly not be. In this case, even the atoms move

considerably from their positions in the perfect crystal, and the electron density

moves still further, so the potential of the defect charge will then be quite strongly

screened.
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[11] G. A. Baraff and M. Schlüter, Phys. Rev. B 30, 1853 (1984).

207



BIBLIOGRAPHY

[12] Ph. Baranek, C. M. Zicovich-Wilson, C. Roetti, R. Orlando, and R. Dovesi,

Phys. Rev. B 64, 125102 (2001).

[13] B. Barbiellini, J. Phys. Chem. Solids 61, 341 (2000).

[14] R. N. Barnett, P. J. Reynolds, and W. A. Lester, Jr., J. Comput. Phys. 96,

258 (1991).

[15] E. R. Batista, J. Heyd, R. G. Hennig, B. P. Uberuaga, R. L. Martin, G. E.

Scuseria, C. J. Umrigar, and J. W. Wilkins, Phys. Rev. B 74, 121102 (2006).

[16] F. Bloch, Z. Phys. 52, 555 (1928).

[17] E.I. Blount, Solid State Phys. 13, 306 (1962).

[18] C. Brouder, G. Panati, M. Calandra, C. Mourougane, and N. Marzari, Phys.

Rev. Lett. 98, 046402 (2007).
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[137] S. Pöykkö, M. J. Puska, and R. M. Nieminen, Phys. Rev. B 53, 3813 (1996).

[138] W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical

Recipes: The Art of Scientific Computing. Cambridge Univ Press (1986).

[139] G. Rajagopal, R. J. Needs, A. James, S. D. Kenny, and W. M. C. Foulkes,

Phys. Rev. B 51, 10591 (1995).

215



BIBLIOGRAPHY

[140] R. Resta, Ferroelectrics 136, 51 (1992).

[141] R. Resta, J. Phys. Condens. Matter 14, R625 (2002) .

[142] R. Resta, Phys. Rev. Lett. 80, 1800 (1998).

[143] R. Resta, Phys. Rev. Lett. 96, 137601 (2006).

[144] R. Resta, S. Sorella, Phys. Rev. Lett. 82, 370 (1999).

[145] P. J. Reynolds, D. M. Ceperley, B. J. Alder, and W. A. Lester, Jr., J. Chem.

Phys. 77, 5593, (1982).

[146] R. Saito, G. Dresselhaus, M. S. Dresselhaus, Physical Properties of Carbon

Nanotubes (Imperial, London, 1998).

[147] P. A. Schultz, Phys. Rev. B 60, 1551 (1999).

[148] C. Sgiarovello, M. Peressi, R. Resta, Phys. Rev. B 64, 115202 (2001).

[149] L. J. Sham and M. Schlter, Phys. Rev. Lett. 51, 1888 (1983).

[150] J. Shim, E.-K. Lee, Y. J. Lee, R. M. Nieminen, Phys. Rev. B 71, 035206

(2005).

[151] A. Shukla, Phys. Rev. B 61, 13277 (2000).

[152] C.-K. Skylaris, P. D. Haynes, A. A. Mostofi, and M. C. Payne, J. Chem. Phys.

122, 084119 (2005).

[153] J. C. Slater, Quantum Theory of Molecules and Solids, New York: McGraw-

Hill (1965).

[154] D.M. Smythe, The Defect Chemistry of Metal Oxides, Oxford University Press

(2000).

[155] F. Sottile and P. Ballone, Phys. Rev. B 64, 045105 (2001).

216



BIBLIOGRAPHY

[156] I. Souza, T. Wilkens, R. Martin, Phys. Rev. B 62, 1666 (2000).

[157] V. N. Staroverov, G. E. Scuseria, J. Tao and J. P. Perdew, Phys. Rev. B 69,

075102 (2004).

[158] I. Tanaka, K. Tatsumi, M. Nakano, H. Adachi, and F. Oba, J. Am. Ceram.

Soc., 85, 68 (2002).

[159] B. Tanatar and D. M. Ceperley, Phys. Rev. B 39, 5005 (1989).

[160] A. Thom and A. Alavi, J. Chem. Phys. 123, 204106, (2005).

[161] J. Toulouse and C. J. Umrigar, J. Chem. Phys. 126, 084102 (2007).

[162] J. R. Trail and R. J. Needs, J. Chem. Phys. 122, 014112 (2005).

[163] J. R. Trail and R. J. Needs, J. Chem. Phys. 122, 174109 (2005).

[164] P. Umari, X. Gonze, A. Pasquarello, Phys. Rev. B 69, 235102 (2004).

[165] P. Umari, A. J. Willamson, G. Galli, and N. Marzari, Phys. Rev. Lett 95,

207602 (2005).

[166] C. J. Umrigar, K. G. Wilson, and J. W. Wilkins, Phys. Rev. Lett. 60, 1719

(1988).

[167] C. J. Umrigar, M. P. Nightingale and K. J. Runge, J. Chem. Phys. 99, 2865

(1993).

[168] C. J. Umrigar, J. Toulouse, C. Filippi, S. Sorella, and R. G. Hennig, Phys.

Rev. Lett. 98, 110201 (2007).

[169] D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).

[170] D. Vanderbilt and R. D. King-Smith, Phys. Rev. B 48, 4442 (1993).

[171] C. G. van de Walle and J. Neugebauer, J. App. Phys 95, 3851 (2004).

217



BIBLIOGRAPHY

[172] M. Veithen, X. Gonze, and Ph. Ghosez, Phys. Rev. B 66, 235113 (2002).

[173] U. von Barth and L. Hedin, J. Phys. C 5, 1629 (1972).

[174] P. R. Wallace, Phys. Rev. 71, 622 (1947).

[175] G. H. Wannier, Phys. Rev. 52, 191 (1937).

[176] T. Wilkens and R. Martin, Phys. Rev. B 63, 235108 (2001).

[177] A. J. Williamson, G. Rajagopal, R. J. Needs, L. M. Fraser, W. M. C. Foulkes,

Y. Wang and M-Y. Chou, Phys. Rev. B 55, R4851 (1997).

[178] B. Wood, Ph.D, Thesis, Imperial College London (2005).

[179] B. Wood, W. M. C. Foulkes, M. D. Towler, N. D. Drummond, J. Phys: Con-

dens. Matter 16, 891 (2004).

[180] B. Wood and W. M. C. Foulkes, J. Phys: Condens. Matter 18, 2305 (2006).

[181] B. Wood, N. D. M. Hine, W. M. C. Foulkes and P. Garćıa-González, Phys.
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