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We present calculations of formation energies of defects in an ionic solid �Al2O3� extrapolated to the
dilute limit, corresponding to a simulation cell of infinite size. The large-scale calculations required
for this extrapolation are enabled by developments in the approach to parallel sparse matrix algebra
operations, which are central to linear-scaling density-functional theory calculations. The
computational cost of manipulating sparse matrices, whose sizes are determined by the large number
of basis functions present, is greatly improved with this new approach. We present details of the
sparse algebra scheme implemented in the ONETEP code using hierarchical sparsity patterns, and
demonstrate its use in calculations on a wide range of systems, involving thousands of atoms on
hundreds to thousands of parallel processes. © 2010 American Institute of Physics.
�doi:10.1063/1.3492379�

I. INTRODUCTION

It is well established that accurate calculations of the
properties of point defects in crystalline materials require the
use of very large simulation cells containing large numbers
of atoms.1 In particular, the formation energies of charged
point defects are strongly affected by finite size errors up to
very large systems, due to the very slow decay of the elastic
and electrostatic fields resulting from the localized perturba-
tion. Crystalline alumina �Al2O3� is an example of a system
where the high ionic charges �formally Al3+ and O2−� mean
that the predominant defects are charged �VO

2+ and VAl
3−� and

thus challenging to simulate accurately.2

For these types of calculation, density-functional3 theory
�DFT� is well established as a mainstay of computational
methods. However, traditional approaches to DFT encounter
a cubic-scaling “wall” with increasing system size since the
total computational effort of a calculation involving N atoms
increases as O�N3�. Furthermore, this effort is nontrivial to
parallelize to large numbers of cores, rendering calculations
of much beyond 1000 atoms rather impractical. Alternative
approaches, known as linear-scaling DFT �LS-DFT�,4,5 refor-
mulate traditional DFT to avoid the computation of orthonor-
mal eigenstates of the Hamiltonian since manipulation of
these is inherently cubic-scaling with system size.

LS-DFT has been the focus of considerable development
effort, with several mature codes now available.6–12 Rather
than working with extended eigenstates, linear-scaling ap-
proaches work in a basis of localized functions, which are, in
general, nonorthogonal. Each of these functions has signifi-
cant overlap only with a small number of other functions on
nearby atoms and this number remains constant with increas-
ing system size N in the limit of large N. This means that a

matrix representing a local operator expressed in this local-
ized basis contains a total number of nonzero elements which
scales only as O�N� rather than O�N2�. The whole matrix can
then be calculated in O�N� computational effort if each indi-
vidual element can be calculated with effort independent of
system size. Furthermore, in an insulator, the single-electron
density matrix is itself exponentially localized. Expressed in
a separable form in terms of this localized basis, the density
matrix can be truncated to O�N� nonzero elements. Finally,
multiplication of sparse matrices whose columns each con-
tain only O�1� elements is possible in O�N� effort. It is these
three crucial points which enable an overall linear-scaling
approach to total energy calculations within DFT in insulat-
ing systems.

The efficiency and feasibility of linear-scaling methods
depends strongly on the methods used for manipulation of
sparse matrices. Performance depends not only on the pref-
actor relating total computational time to system size, but
also on the degree of parallelizability of the method. The
computing power available in a single parallel process �one
core of one processor in a parallel computer� has not in-
creased significantly in recent years, so if feasible system
sizes are to increase, the scaling of algorithms with number
of parallel processes P is just as important as scaling with N.
Put another way, as N grows, algorithms for linear-scaling
DFT must remain able to perform simulations within feasible
wall-clock time by allowing P to increase. To ensure this, if
N and P are increased proportionally, the total time must
remain roughly constant. This is not simply a computer sci-
ence issue, but requires parallel algorithms designed around
the physics of the problem and the systems being studied.

In this paper, we describe and apply a novel approach to
matrix algebra in the context of electronic structure methods,
optimized for linear-scaling calculations on parallel comput-
ers. In this “hybrid” scheme, designed for speed and parallela�Electronic mail: nicholas.hine@imperial.ac.uk.
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efficiency, we mix elements of both sparse and dense matrix
algebra. We divide up matrices according to the parallel pro-
cess on which the data associated with a given atom is lo-
cated, then define segments of the matrix to be stored �and
communicated� in sparse-indexed or dense format according
to the density of nonzero elements. It becomes possible to
determine for a given operation a fixed subset of parallel
processes with which each process will require communica-
tion and how best to transmit the communicated data on the
basis of the physical distribution of the atoms within the
simulation cell. At a constant ratio of atoms per core N / P,
the number of other cores with which communication is re-
quired is shown to remain constant. Therefore, for larger and
larger equivalent calculations on more and more parallel
cores, total time does not significantly increase, resulting in a
constant “time-to-science” for any system size, given ad-
equate computational hardware.

We have implemented our approach within the ONETEP

LS-DFT code,12 although the methods described are gener-
ally applicable in any LS-DFT code that employs a localized
basis. Its implementation in ONETEP �Sec. II� has led to sig-
nificant performance improvements which we describe in
Sec. III. In Sec. IV, we present an application of the im-
proved methods to the calculation of the formation energies
of charged defects in �-Al2O3 �corundum�. Extrapolating to
the limit of infinite dilution the formation energies of the
defects, which vary with the size of the simulation cell due to
finite size effects, we are able to systematically identify and
eliminate the finite size errors present and analyze their
effects.

II. SPARSE MATRIX ALGEBRA FOR ELECTRONIC
STRUCTURE

A. Sparse matrices in electronic structure

ONETEP is a linear-scaling DFT code for total energy and
force calculations on systems of hundreds to hundreds of
thousands of atoms.13 It uses a set of optimizable localized
functions, referred to as nonorthogonal generalized Wannier
functions �NGWFs�,14 expressed in terms of periodic sinc
functions �psincs�,15 to represent the density matrix. The ba-
sis of psinc functions has very similar favorable properties to
the plane-wave basis frequently used in traditional DFT.
ONETEP therefore combines the benefits of linear-scaling
with system size with the variational bounds and systematic
convergence with respect to basis size provided by a plane-
wave basis. Recent development work13 on the ONETEP code
resulted in considerable speedup to the performance of LS-
DFT simulations. However, it was also demonstrated that
sparse algebra operations remained the limiting factor on
parallel efficiency when scaling to large numbers of pro-
cesses and that scaling of the calculation wall-clock time as
O�N / P� was not obtained beyond around P�100.

The matrix algebra required for electronic structure cal-
culations using nonorthogonal localized orbitals mostly in-
volves combinations of three basic matrices: the overlap ma-
trix S��= ��� ���	 between pairs of orbitals ���r� and ���r�,

the Kohn–Sham Hamiltonian H��= ����Ĥ���	 in the basis of
these functions, and the density kernel K��, which expresses
the single-particle density matrix

��r,r�� = ���r�K�����r�� . �1�

We are using the convention of summation over repeated
Greek indices, subscripts to denote covariant indices, and
superscripts to denote contravariant ones. The generalization
of these and all the following expressions to spin dependent
forms is straightforward, so spin-labels will be omitted.

The NGWFs 
���r�� are strictly localized with a cutoff
radius R� �typically around 3–4 Å� so S�� is only nonzero if
�� and �� overlap. H�� is nonzero either if �� and �� over-
lap directly or if they both overlap a common nonlocal pro-
jector. K��, meanwhile, is defined to be nonzero only for
elements � ,� on atoms at R� and R� for which �R�−R��
�RK, where the kernel cutoff RK is typically chosen to be of
order 10–25 Å in an insulator. All quantities are therefore
expressed in terms of matrices containing only O�N� nonzero
elements in the limit of large N and for which the matrix
structure is known a priori. Note that this is in contrast to
linear-scaling methods which apply a thresholding approach
to sparsity patterns by discarding matrix elements whose
magnitude is below some threshold, in which case the matrix
structure may change dynamically as the calculation
progresses.

Minimization of the total energy in the above formalism
corresponds to minimizing

E�
K���,
���� = K��H�� + EDC�n� , �2�

with respect to the kernel K�� and the set of functions 
���
simultaneously. EDC�n� is a double-counting term written in
terms of the electron density n�r�=��r ,r�, which subtracts
off density-density interactions accounted for twice in the
Tr�KH� term. The total energy E is variational with respect
to each of the plane-wave cutoff Ecut of the grid on which
���r� is evaluated, the NGWF radii 
R�� and the kernel cut-
off RK. Details of the methods used to optimize the kernel16

and the NGWFs �Ref. 17� can be found elsewhere. The im-
portant point is that all aspects of the minimization process
require extensive use of sparse matrix algebra, in particular
the evaluation of the product of pairs of sparse matrices.

For the optimization of the density matrix, manipulation
of matrices of considerably lower sparsity than the density
kernel itself is required, so as not to discard contributions to
the kernel gradient during conjugate gradients optimization.
There is therefore a need for a sparse algebra system capable
of high performance and excellent scaling across a range
spanning from highly sparse matrices �such as 0.01% non-
zero elements� to fully dense matrices �100% nonzero ele-
ments� within the same framework. The usual approach to
sparse matrix algebra problems is to store only the nonzero
elements of the matrix, either determined by the geometry of
the problem, or indexed element by element, in an index
stored separately from the data itself. However, in large sys-
tems, there are very large numbers of nonzero elements and
the computational overhead of indexing them can be enor-
mous.
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For this reason, for a given matrix algebra operation,
there will exist a threshold of element density above which
the dense matrix algebra is more efficient than sparse alge-
bra. This is often around 10% or less for a matrix product,
though precise details depend on the specific software and
hardware implementation. Previous versions of ONETEP �and
to our knowledge, most other linear-scaling electronic struc-
ture codes� have supported only either all sparse-indexed ma-
trices or all dense matrices within one calculation. However,
neither of these extremes is able to obtain good performance
and scaling for typical realistic systems. We thus describe a
hybrid hierarchical system able to handle the cases of both
highly sparse and fully dense matrices efficiently within the
same framework, building the distribution of the matrix over
the processes of a parallel computer into the framework in a
natural way. Hierarchical approaches to sparse matrix alge-
bra, such as combining atom-blocks into larger groups, have
been described previously.18–21 However, this has generally
been applied to electronic structure methods applying thresh-
olding to determine sparsity patterns. Here we will discuss
the specifics of application to the case of fixed matrix spar-
sity, in particular the extra benefits that can be obtained in
terms of reducing the volume of parallel communication be-
tween processes.

B. Parallel distribution of sparse matrix algebra

The first step is to distribute the atoms over the parallel
processes in such a way that each process only has atoms
whose functions overlap those of as small as possible a num-
ber of other processes. This is achieved by ordering the at-
oms according to a space-filling curve �SFC�.21 Atoms are
assigned a Gray code formed by interleaving the binary dig-
its of their position expressed in terms of a coarsened grid
along each of the three axes. The use of a separate grid for
each axis ensures that in simulation cells with high aspect
ratio, the absolute distances along the three axes are given
equal weight. The atoms are then sorted according to their
Gray code and distributed to processes in such a way as to
balance the number of NGWFs per atom evenly. This en-
sures each process holds a spatially localized group of atoms,
with adjoining spatially localized groups on “nearby” pro-
cesses numerically.

The distribution of matrix data over processes then fol-
lows the distribution of atoms: columns corresponding to
functions on a given atom are held by the process to which
that atom belongs. For reasons of efficient parallelization,
these process-columns are further divided into “segments,”
corresponding to row-functions associated with a given pro-
cess. The result is a grid of P� P segments each of size
Mj �Ni, where Ni is the number of column elements on pro-
cess i and Mj is the number of row elements on process j
�Fig. 1�.

For a set of atom-centered functions, such as NGWFs or
nonlocal pseudopotential projectors, if any function on a
given atom I overlaps a function on a different atom J, then
all the functions on both atoms overlap, giving rise to a block
of mJ�nI matrix elements which are all nonzero, where nI is
the number of �column-� functions on atom I and mJ is the

number of �row-� functions on atom J. Therefore, rather than
indexing individual nonzero elements, a large saving in both
memory and CPU time is obtained by indexing nonzero
atom-blocks. This form of sparse blocked matrix is common
to many linear-scaling electronic structure
implementations.21–23 Note that the number of row elements
may differ from the number of column elements for a given
atom to allow treatment of nonsquare matrices such as the
overlap matrix between NGWFs and projectors.

The typical cutoffs required, especially when dealing
with the density kernel in systems with a small energy gap,
are quite large on the scale of typical interatomic distances.
Therefore, each atom may be associated with nonzero ele-
ments in blocks associated with a large number of other at-
oms. As seen in Fig. 2, the SFC ordering ensures that the
majority of these nonzero elements will belong to either the
same process or one of a small number of nearby processes.
Therefore, a typical matrix will contain a broad band of non-
zero elements centered on the diagonal but extending some
way off it. Figure 2 shows examples of the segment filling
fractions for the product �KS��

� of the density kernel and the
overlap matrix for various typical systems. Because of this
banding of nonzero elements near the diagonal, it is often the
case that for a given segment near the diagonal, most or in
many cases, all of the elements in such a segment are non-
zero, especially in the matrices representing products such as
KS, KSK, and KSKS. Similarly, many of the segments far
from the diagonal will contain few nonzero elements or none
at all.

We therefore add a second level of indexing of the spar-
sity pattern, corresponding to the aforementioned segments
of the matrix. A count is made of the number of nonzero
elements within each segment. This is then used to determine
whether each segment either �a� contains a fraction of non-
zero elements greater than or equal to some threshold �,
where 0	�	1, and is thus declared “dense” and stored in
full �including zero elements�; �b� contains a fraction of non-

FIG. 1. Parallel distribution of a sparse matrix, first into column-segments
�distributed over processes� then into row-segments within each column,
according to the same pattern. Each segment is either blank, sparse-indexed
by atom-blocks, or fully dense. In the example shown, a matrix with 20
atoms is divided columnwise over four processes, with four row-segments
per process, each containing 5�5 atom-blocks, each of which may or may
not be present in the sparse index. One individual segment j on process i of
size Mj �Ni is highlighted, as is one block of size mJ�nI within this seg-
ment, associated with the overlap of atoms I and J.
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zero elements less than � and is thus “sparse,” and the block-
indexing is retained; or �c� contains no nonzero elements and
is thus “blank.” This segmentation has numerous advantages
in terms of reducing both the computation and communica-
tions requirements of matrix algebra, particularly matrix
multiplication.

Consider the matrix product operation C�
�=A�
B
�.

Each segment can be thought of as a submatrix �in general
these are not square�. Denoting by Xki the row-segment k of
the matrix X in column-segment i �thus, stored on process i�,
we can write the segments of the product matrix as

Cki = �
j

Akj · B ji.

The individual contributions j to Cki can be evaluated in
several different ways according to the density � in the vari-
ous segments involved. Note that if either Akj or B ji is blank,
then no calculation is required for that index value j, while if
Cki is blank, no calculation is required at all.

At the other extreme, if Akj, B ji, and Cki are all dense
segments, then the multiplication operation can be performed
very efficiently through a dense linear algebra library call,
without reference to the indexing. If Akj and B ji are dense,

but due to truncation Cki is not, then the small number of
nonzero elements of Cki can be calculated individually by
multiplying the relevant row of Akj by the column of B ji and
summing the result.

These simplifications greatly reduce the indexing over-
head, as they bypass the need for indexing entirely within the
most time consuming part of the operation. This alone results
in very considerable speedup when the nonzero elements are
well-localized near the matrix diagonal. The total effort of
this approach does not scale up with P: there are O�P3� pairs
of segments to consider in general �loops over j and k on
each process i�, but the size of each segment scales down as
1 / P, so the total computational effort is constant with P.

Furthermore, if one imagines a given system and then
increases it in size, by scaling up N and P together, the total
number of such pairs of segments where both are within
some range of the diagonal, and thus dense, will only scale
as O�N�. This is simply a discretization of the idea that al-
lows sparse algebra to be O�N� in the first place. Therefore,
the overall computational effort required for the matrix prod-
uct remains O�N� even though a large part of it is being
performed using dense matrix algebra on fairly large
matrices.

C. Communications patterns

There are also significant advantages to be gained from
division into segments in terms of reducing communications
load. Recall that each process holds a fraction approximately
equal to 1 / P of the columns of the matrix. Taking the sim-
plest approach, the whole index and all the nonzero elements
of A local to process j would be sent to process i, in order
that process i could calculate all terms contributing to the
local data of C. In that case, a total volume of data O�N / P�
is sent by process i to P different processes. The total com-
munications load per process would therefore grow as O�N�,
but would not scale down at all with increasing P. Asymp-
totically, the wall-clock time could not behave as O�1 / P�
with increasing P: a limit would inevitably be reached where
communication of the matrix data to all other processes
would become the limiting factor on performance.

This undesirable situation can be avoided though the use
of shared information about the segments stored on other
process. Alongside the creation of the index for a matrix A,
process j sends the number of nonzero elements in the seg-
ment numbered i stored on process j to process i for future
use. When performing a matrix product, process i then only
needs to receive the index and data of A from processes j,
for which the segment B ji on process i is not blank. If many
off-diagonal segments of B are blank, this results in a huge
saving in the amount of data sent.

With this approach, if P is increased at fixed N, the total
communications load remains constant. In fact, as P and N
increase proportionally, the communications load per process
does not have to grow, as there remains only a small, con-
stant number of other processes with which any communica-
tion is required. Note that this is, in effect, the same principle
which allows for O�N� scaling of the total computational

FIG. 2. Segment-by-segment filling factors of sparse matrices in typical
large systems divided over P=64 processes. Matrices of the sparsity pattern
�KS��

� �the product of the density kernel and overlap matrices� are shown
for �a� a �10,0� zigzag nanotube �4000 atoms�, �b� a 64 base-pair sequence of
B-DNA �4182 atoms�, �c� a H-terminated wurtzite-structure GaAs nanorod
�4296 atoms�, and �d� 8�8�8 supercell of eight-atom cubic unit cells of
crystalline Si �4096 atoms�. Each pixel represents a segment, whose color
shows the fraction of matrix elements in that segment which are nonzero:
black segments contain no nonzero elements, through red, then yellow, to
white segments containing all nonzero elements. The nonzero elements are
seen to be clustered near the diagonal of the matrix �though less so with
increasing periodicity and complexity of the structure�. The space-filling
curve ensures that in a given column, there are nonzero overlaps only with
rows of atoms on nearby processes, so the nonzero elements form a broad
band centered on the diagonal. This is clearest for the simple structure of the
nanotube, but even for the crystalline solid, there are segments in which
there are few or no nonzero elements.
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effort in the sparse product operation, applied now to the
total communications volume of scaling the calculation up to
P processes.

The segment-based approach mandates a further im-
provement in the parallel communications algorithm in order
to work effectively. Reference 13 described a communica-
tions pattern whereby “blocking” operations, in which all
processes received all data from a given process simulta-
neously, were replaced by a “round-robin” system in which
each received data first from its adjacent neighbor, then its
next-nearest-neighbor, and so on in synchrony. This repre-
sented an excellent improvement in efficiency over the pre-
vious system. However, for this algorithm to scale up per-
fectly to large P requires an idealized distribution of nonzero
elements in the matrices involved: the number of overlaps,
and thus the amount of computation involved in calculating
the contribution to the matrix product on process i of the
segments of process j, needs to remain roughly constant for
processes of a given numerical separation �i− j�. In that case,
the algorithm could remain near-ideal even in the presence of
division of the matrix into segments and avoidance of com-
munications for noncontributing segments.

However, an ideal distribution of elements is rarely en-
countered in practice, as illustrated by the nonuniform band-
ing of Fig. 2. The simple algorithm just described thus begins
to scale poorly with P at around P=200 and very little fur-
ther increase in speed is obtained beyond about P=500.13

Note that this was nevertheless a significant improvement
over the effective P�64 limit of the blocking communica-
tions approach. Given this uneven distribution, it becomes
necessary, for large numbers of processes P, to implement an
“on-demand” communications system, whereby in order to
receive the index and data of matrix A, process i must first
send a request message to process j, and process j then re-
plies by sending the required index and data. Despite the fact
that this method incurs a latency penalty twice, this algo-
rithm is almost invariably faster than forcing all processes to
work in synchrony, as in the round-robin communications
system. In particular, with simultaneously increasing N and
P, this approach allows the communications load to scale as
O�N / P� as long as each process only requires communica-
tions with a small fraction of the other processes.

A further large reduction in the amount of data that must
be sent from process j to process i can be achieved even for
cases where there are nonzero elements in segment B ji. For
each segment k, only those nonzero blocks of Akj which
actually contribute to Cki on i need to be sent from process j
to process i. For this to be the case, there must be nonzero
blocks in B ji which will multiply nonzero blocks in Akj such
that they contribute to nonzero blocks of Cki. A list of such
contributing blocks can be formed by having process i re-
quest and receive first the indices of each the segments Akj

on j. Looping over the nonzero blocks in the indices of B ji

and Cki on process i, a list can be made of those nonzero
blocks in Akj which contribute to the result. From this, a
“cropped” version of the index of Akj is constructed which
contains only the nonzero blocks contributing to the result.

This list is sent back from i to j; upon receiving it, process j
extracts the required blocks from the local segments Akj and
sends them to process i.

Using this “cropping” method, any given nonzero block
in the data of each Akj is only sent to those processes which
need it, which may be very much less than the total number
of processes with which there are any overlaps at all. This
results in a very considerable reduction in total communica-
tions volume. Figure 3�a� shows the total amount of data sent
per process while performing a typical matrix multiplication
�K ·S→KS�, with and without cropping the data of A, for a
system comprising 100 unit cells of a �10,0� zigzag carbon
nanotube �4000 atoms�. Figure 3�b� shows the wall time for
this product operations with and without the cropping.

III. PERFORMANCE

The hierarchical sparsity scheme described here obtains
significant performance benefits over previous methods in
real simulations. To demonstrate this, we compare the wall-
clock time for systems representing five common uses of
linear-scaling DFT. These are �i� a section of a �10,0� zigzag
nanotube, �ii� a 64 base-pair strand of a molecule of DNA
with a random sequence of base-pairs, �iii� a large ortho-
rhombic supercell of �-alumina �6�6�3 copies of the 30-
atom hexagonal cell�, �iv� a gallium arsenide nanorod, and
�v� a large supercell �8�8�8 copies of the eight-atom cubic
cell� of crystalline silicon �a small-gap semiconductor�.
These systems are all of comparable size in terms of numbers
of atoms �around 4000�, but display a wide range of levels of
matrix sparsity, plane-wave cutoffs, NGWF and kernel cut-
offs, and numbers of nonlocal projectors.

Table I summarizes the details of these test systems.
Note that we have chosen in each case the most accurate
available norm-conserving potential available; in some cases,
this results in a high number of projectors. The Appendix
describes the application of these sparse algebra techniques
to the nonlocal contribution to the Hamiltonian and the speed
up thus obtained in the routines treating nonlocal pseudopo-
tentials. This has the result that the nonlocal potential calcu-
lation is a comparatively small fraction of the total time �less
than 20% in all cases�. The cutoff energies are chosen so as
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FIG. 3. �a� Total data sent per process and �b� total time per operation for a
matrix product operation K ·S→KS performed for a 4000-atom carbon
nanotube on 32 and 64 processes. This system has four NGWFs per atom,
hence K, S, and KS are all 16 000�16 000 matrices, with roughly 2%, 7%,
and 10% nonzero elements, respectively. Results are shown with and with-
out cropping of the data of K before it is sent, showing the decrease in
communications volume and the resulting improvement in both overall time
and scaling. See Fig. 2�a� for a representation of the sparsity pattern of the
matrix KS.
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to ensure convergence of the total energy in ONETEP �which
has slightly more stringent requirements on the spacing of
the underlying psinc grid compared to the real space grid
corresponding to a given plane-wave cutoff�. In some cases,
such as the 600 eV cutoff used for the silicon system, this is
higher than the corresponding value required for a typical
plane-wave calculation. In all these tests, we have used
16–64 quad-core Intel Core i7 processors with 12 GB of
memory per processor, i.e., 64–256 individual cores. These
processors are linked by a dual-infiniband network with very
low latency.

As explained in Sec. II, segments of each matrix struc-
ture are determined to be either blank, sparse, or dense de-
pending on the fraction of nonzero elements they contain.
The dividing line between sparse and dense storage and use
is determined by a parameter �, the fractional filling above
which a given segment is stored as a full matrix rather than
indexed. For serial matrix algebra, �where the whole matrix
is effectively one segment� the optimal value for this is often
quoted as of order 0.1, but in the case of parallel matrix
algebra, where there is a large contribution to the total time
from communications overhead, it may differ significantly
from this value. To find a suitable default choice, we com-
pare in Fig. 4 the total time spent on sparse matrix product
operations during a single NGWF optimization iteration with
ONETEP for these typical systems. As � is varied from �=0,
at which point all segments are stored in dense format, to
��1, at which point all segments are stored in sparse for-
mat, the sparse algebra becomes at first more then subse-
quently less efficient and a minimum is observed for most
systems at around �=0.3–0.4. The exceptions are the solid
systems, where due to the 3D periodicity, there is a less
uniform distribution of overlaps �see Fig. 2�d��, so less ben-
efit is obtained through matrix sparsity. Nevertheless, �
=0.4 appears to represent a good compromise which works
well for almost all systems.

To show the effect of the new approach to sparse matrix
algebra on total execution times, Fig. 5�a� shows the total
time for one NGWF optimization iteration on 64 parallel
cores, with and without the application of the aforemen-
tioned algorithm to sparse algebra. Typically 10–25 iterations
are required for full energy minimization, independent of
system size, so overall this represents approximately 7%–
10% of the time for a full calculation �given the setup and

initialization time�. Execution times are somewhat reduced at
fixed P=64 with the new system, in particular the fraction
devoted to sparse algebra tasks.

More significant, though, is the improved scaling to
larger numbers of processors, as shown in Fig. 5�b�, which
shows the speedup over 64 cores achievable on 128, 192,
and 256 cores for both approaches. The scaling is seen to be
significantly improved with the current approach, increasing
the scale of calculations that can feasibly be performed. Note
that the speedup is normalized to the time on 64 processors
for that approach �old or new�, so any improvement in the
speedup is gained on top of the improvement at fixed P
=64 shown in Fig. 5�a�.

To illustrate more clearly the scaling with increasing sys-
tem size N and process count P, we focus on one particular
test system: the DNA strand. This is an isolated nonperiodic
system, typical of problems studied in computational bio-
chemistry, and an ideal application of linear-scaling methods.
The systems simulated comprise straight strands of deoxyri-
bonucleic acid, consisting of variable numbers of base-pairs
AT, TA, CG and GC. The sequences were generated ran-

TABLE I. Key to the abbreviations used for the five different test systems, chosen to represent a cross-section
of common uses of LS-DFT �carbon nanostructures, organic molecules, ceramic oxides, semiconductor nano-
structures, and crystals�. Choices also represent different extremes of cutoff energy Ecut and kernel and NGWF
cutoffs RK and R�. The number of atoms Nat, number of NGWFs N�, and number of nonlocal pseudopotential
projectors Nproj are also shown.

Abbreviation System Ecut /eV RK /a0 R� /a0 Nat N� Nproj

C4000 NT �10,0� carbon nanotube 400 20 6.7 4000 16 000 36 000
DNA 64bp 64 base-pairs of DNA �Na+-neutralized� 700 30 7.0 4182 9776 2526
6�6�3 Al2O3 �-alumina 6�6�3�hexagonal cell 1200 24 8.0 3240 12 960 18 792
GaAs NR H-terminated wurtzite GaAs nanorod 400 40 10.0 4296 14 376 13 440
Si4096 Si crystal, 8�8�8�cubic cell 600 24 6.7 4096 16 384 32 768
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FIG. 4. Timings for the sparse algebra operations of a typical set of runs as
a function of �. A minimum is observed in most cases for around �
=0.3–0.4. The dotted line shows the time taken to run with the same parallel
communications algorithm, but without the division into segments, so de-
scribing the whole matrix in sparse block-indexed form. In all cases, notable
speedup can be obtained, with best performance for the more linear systems
�nanotube, DNA, and nanorod�.
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domly, with atom positions created with the NUCLEIC ACID

BUILDER
24 code, then phosphate groups neutralized by add-

ing Na+ ions to the system with the AMBER code.25 Finally,
the positions were relaxed within an empirical potential
framework, again using AMBER. This generated a starting
point for DFT where the forces on the atoms were tolerably
low.

In Fig. 6, we show the wall-clock time for a full single-
point energy calculation of strands of increasing length, all
run on the same number of cores �P=256�. Clear linear-
scaling behavior is seen over the range from 2091 to 16 775
atoms.

Figure 7, on the other hand, shows timings for a system
of fixed size �64 base-pairs, 4184 atoms� as the number of

processes is increased. One can see that as P increases, T
initially falls as 1 / P but eventually the parallel efficiency
decreases as the number of atoms per core falls to below
around 50. For this system, it is possible to go up to around
256 cores before notable inefficiency is observed. For larger
systems, this maximum would increase.

Finally, Fig. 8 represents the most insightful test of par-
allel efficiency for real-world usage: here we compare total
execution times for an N-atom simulation on P processes
where the ratio N / P is kept constant, in that as the size of the
system increases, the number of cores the simulation is run
on increases proportionally. This corresponds to demanding a
constant, feasible time-to-science, given larger and larger
problems on correspondingly larger parallel computers. If
one wishes to obtain completed simulations in feasible wall-
clock time by increasing the number of processes without
limit, then this execution time must be able to remain
roughly constant.

As the nearly flat line of Fig. 8 shows, this goal is very
nearly achieved with the ONETEP approach in the 64–256
processor regime. To take advantage of scaling to larger sys-
tems through the regime of so-called “terascale” computing
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FIG. 5. �a� Total timings for one NGWF iteration for a range of typical
systems, on P=64 parallel processes. �b� Speedup T�P� /T�64� achieved on
P processes relative to time on P=64 processes with the new �solid lines�
and old �dashed lines� approaches to sparse algebra.
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FIG. 6. Wall-clock time for strands of random DNA of increasing numbers
of base-pairs �12, 24, 48, and 96�, hence increasing numbers of atoms, with
P=256. The inset shows the number of iterations required for the conver-
gence of the NGWF optimization. There is minor random variation with
size, including an apparent upward trend at low N, but over a wider range of
sizes, there does not appear to be a systematic increase in number of itera-
tions with system size.
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FIG. 7. Wall-clock time �left scale, squares� and speedup over 64 cores
�right scale, circles� for a full total energy calculation of a 64 base-pair
strand of DNA �4182 atoms� on varying numbers of parallel cores �P
=64, 96, 128, 192, 256�.
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FIG. 8. Wall-clock time for 16, 32, 64, and 128 base-pair strands of DNA
executed on 32, 64, 128, and 256 cores, respectively, so as to keep the ratio
N / P constant �the number of atoms per core�. Wall-clock time does not
increase very greatly—less than 30% over nearly an order of magnitude in
N. Inset: number of NGWF iterations required for convergence of the total
energy, which varies slightly between different size systems due to random
variation in the difficulty of attaining convergence for different base-pair
sequences.
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�1012 floating point operations/s� and toward the petascale
regime �1015 flop/s� efficiently, codes must be able to main-
tain this scaling from to tens of thousands to hundreds of
thousands of cores. This remains a significant challenge for
high-accuracy LS-DFT approaches.

IV. APPLICATION TO DEFECTS IN �-Al2O3

The increased capabilities of this approach to sparse al-
gebra enable us to calculate the formation energy of charged
vacancies in alumina in simulation cells of significantly in-
creased size. Formation energies of charged defects in metal
oxides are strongly affected by finite size effects on the elec-
trostatic and elastic energy, when simulated in periodic su-
percells �see Ref. 2 and references therein�. The large cell
sizes accessible to calculations with ONETEP allow us to ad-
dress these finite size effects directly by calculating forma-
tion energies using a series of larger simulation cells and
extrapolating to infinite size.26

The primitive cell of �-Al2O3 is trigonal, containing two
formula units �ten atoms�, but this is a poor choice for defect
calculations as the spacing between periodic images of the
defect falls slowly with increasing simulation cell size due to
the elongated nature of the cell. A better approach is to form
the equivalent 30-atom hexagonal cell, repeat it 2�2�1
times, and thus form the 120-atom orthorhombic cell. One
can then construct even larger simulation cells by repeating
the 120-atom cell: doubling it along each lattice vector cre-
ates a 960-atom cell and tripling it creates a 3240-atom cell.
Traditional plane-wave DFT would operate efficiently at the
scale of the 120-atom cell. However, since the memory and
computational time requirements scale as O�N2� and O�N3�,
respectively, the method would struggle with the 960-atom
cell, and the 3240-atom cell would be unfeasible even on
state-of-the-art hardware. Note that when using high-
accuracy norm-conserving pseudopotentials for oxygen, the
G-vector grid required to converge the total energy and
forces must be fairly fine �Ecut=1200 eV was used here�,
hence the large memory requirements.

Limited to one or two points, it is impossible, or at best
highly unreliable, to attempt an extrapolation to infinite size.

Alternate approaches to this type of extrapolation have been
proposed2 which can work with independent scaling of the
cell along different lattice vectors. However, the validity of
this latter approach is yet to be verified directly and, in any
case, the method is only fully reliable in systems where the
defect is strongly localized and has negligible multipole mo-
ments beyond the monopole term.

Using the new approach to sparse algebra and nonlocal
projectors described here, it becomes feasible to simulate the
960-atom and 3240-atom systems directly, running full ge-
ometry optimizations within comparatively modest computa-
tional requirements. We can then perform a direct extrapola-
tion to infinite cell size of the formation energy as a function
of 1 /L based on the first three achievable system sizes. Full
geometry relaxation is performed for each defect, starting
from perfect cell positions with an atom removed near the
center of the cell.

Defect formation energies are calculated using the ap-
proach referred to as the Zhang–Northrup formalism,27 fol-
lowing Ref. 2. We take representative values �specific to the
choice of pseudopotential and functional� of chemical poten-
tials for oxygen atoms and aluminum atoms from Ref. 2.
These are �O=433.13 eV an �Al=−66.11 eV. The specific
choices of these chemical potentials do not affect the conver-
gence of the formation energy with system size since they
are simply bulk properties depending on the material and
chosen formation conditions, namely, the partial pressure pO2

and temperature T of the oxygen atmosphere with which the
material is contact during annealing. These choices represent
T=1750 K and pO2

=0.2 atm. The electron chemical poten-
tial is determined by the requirement of overall charge neu-
trality; for the sake of displaying representative values dur-
ing the extrapolation to infinite size, we shall simply
arbitrarily set �e at 1.5 eV above the valence band edge at
EVBM=7.84 eV.

Table II shows the total energies of the bulk supercell at
different cell sizes, the total energies of equivalent supercells
containing VO

2+ defects VAl
3− defects, and the defect formation

energies of each. The formation energy of the VO
2+ defect is

TABLE III. Supercell size, Madelung energy vM, total energies of perfect and defect supercells, and defect
formation energies �in electron volts� for VO

2+ and VAl
3− calculated using the CASTEP plane-wave DFT package.

N
vM

�eV�
Eperf

�eV�
Edef�VO

2+�
�eV�

Edef�VAl
3−�

�eV�

Ef�VO

2+�
�eV�


Ef�VAl
3−�

�eV�

120 3.80 �34 357.04 �33 938.69 �34 260.82 4.38 1.38
960 1.90 �274 857.27 �274 438.71 �274 759.79 4.58 2.64

TABLE II. Supercell size in terms of number of atoms N, Madelung energy vM, total energies of perfect and
defect supercells, and defect formation energies �in electron volts� for VO

2+ and VAl
3− calculated with the ONETEP

approach.

N
vM

�eV�
Eperf

�eV�
Edef�VO

2+�
�eV�

Edef�VAl
3−�

�eV�

Ef�VO

2+�
�eV�


Ef�VAl
3−�

�eV�

120 3.80 �34 356.18 �33 937.82 �34 259.99 4.39 1.35
960 1.90 �274 861.26 �274 442.68 �274 763.72 4.60 2.70

3240 1.27 �927 660.84 �927 243.13 �927 563.83 4.65 3.08
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Ef�VO
2+,L� = Edef�L� − Eperf�L� + �O + 2�e, �3�

while that of the aluminum vacancy is

Ef�VAl
3−,L� = Edef�L� − Eperf�L� + �Al − 3�e. �4�

For comparison, Table III shows the same calculations
repeated using the CASTEP code28 for the smaller two cells.
CASTEP is a traditional cubic-scaling plane-wave pseudopo-
tential DFT code. Within CASTEP, it is possible to choose
exactly the same pseudopotential, exchange-correlation func-
tional, and grid spacings so as to as near as possible match
those used in the ONETEP calculation. The CASTEP calculation
remains faster than the ONETEP calculation at 120 and 960
atoms �though for the latter, the two are becoming compa-
rable� but becomes unfeasible in terms of both memory and
computational time well before 3240 atoms, whereas ONETEP

is into the linear-scaling regime by this point. As discussed
previously,29 the fact that in plane-wave codes such as
CASTEP, orbitals are expanded in a plane-wave basis cutoff
on a sphere in reciprocal space, whereas ONETEP is effec-
tively using a full rectangular grid, means that the ONETEP

results are effectively obtained at a higher cutoff and hence
return a slightly lower total energy. Despite this, the forma-
tion energies—which are energy differences—agree well be-
tween the two approaches: agreement to better than 0.1 eV is
seen in all cases.

The sheer scale of each supercell total energy �nearing
106 eV in the largest cases� emphasizes the level of accuracy
required to obtain the defect formation energies accurately at
large system sizes. The systematic behavior of the defect
formation energy with system size L demonstrates that the
energies are sufficiently well-converged to be used reliably
in an energy difference such as Eqs. �3� and �4� and that the
cancellation of error between large similar systems is oper-
ating beneficially.

Figure 9�a� shows 
Ef�VO
2+� as a function of vM �1 /L,

while Fig. 9�b� shows the formation energy Ef�VAl
3−� of the

VAl
3− defect. Also shown is a linear fit to vM, under the as-

sumption that the dominant term in the finite size error is a
monopole-monopole term. Such an assumption can be
shown to give30,31


EFS =
q2vM

2�fit
, �5�

where �fit is a fitting parameter dependent on the defect. This
fitting parameter is loosely related to the static dielectric con-
stant of the material, but varies significantly between differ-
ent defects even in the same material, motivating the need
for a fit and extrapolation rather than a single-shot correction
of a result for a small supercell.

While there are not enough data to perform statistical
analysis, the combination of a close agreement between the
linear fit with the data, plus the good agreement between the
ONETEP results and the available CASTEP results, suggests
both that the model is accurate and that the ONETEP results
are sufficiently well-converged to give accurate results in
these very large systems. The resulting extrapolated defect
formation energies, at these chosen values of chemical po-
tential, give 
Ef�VO

2+�=4.78 eV and Ef�VAl
3−�=3.97 eV.

Notably, if the uncorrected value from the N=120 super-
cell had been used, the resulting finite size error on the for-
mation energies would have been 0.4 eV and 2.6 eV, respec-
tively. Similarly, as shown in Table IV, while the bond
lengths in the region immediately around the defect site �the
first nearest-neighbor �1NN� shell� are close to convergence
at N=120, those far away are barely different from their bulk
values since the artificial symmetry imposed by the periodic
boundary conditions prevents the relaxation the defect would
normally induce. It can be seen that only by going to the
largest system size do the third nearest-neighbor �3NN� dis-
tances begin to change significantly from their bulk values.

By assuming the simplest form of disorder involving
these two defect species, namely, Schottky equilibrium, we
can make a very rough estimate of the dependence of defect
concentrations on the simulation cell size through the finite
size errors on the formation energy. We make the crude ap-
proximation of replacing the temperature-dependent free en-
ergy with the 0 K DFT total energy. We then relate the va-
cancy concentrations per formula unit of Al2O3 at
temperature T to the formation energies through

�VO
2+� = 3e−
Ef�VO

2+�/�kT�,

�VAl
3−� = 2e−
Ef�VAl

3−�/�kT�.

Assuming perfect Schottky equilibrium and overall charge
neutrality, we then have
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FIG. 9. Scaling of defect formation energy against Madelung energy for �a�
aluminum vacancy VAl

3− and �b� oxygen vacancy VO
2+. The Madelung energy

scales as 1 /L, so the extrapolation to vM →0 represents extrapolation to the
infinite dilution limit.

TABLE IV. Mean distances from the vacancy site to the shells of nearest-
neighbors of VO

2+ as system size increases. Nearest-neighbors �1NN� are four
Al ions, second nearest-neighbors �2NN� are 12 O ions, and 3NN are six Al
ions. In the smallest cell, the 3NN ions are constrained by the artificial
periodicity to hardly move from their bulk positions. Increasing the cell size
allows them to relax, but the relaxations are slow to converge to their infinite
cell-size limit.

System r1NN�a0� r2NN�a0� r3NN�a0�

Perfect crystal 3.5582 5.0666 6.3415
VO

2+ in 120-atom cell 4.0030 4.9653 6.3444
VO

2+ in 960-atom cell 4.0006 4.9572 6.3483
VO

2+ in 3240-atom cell 4.0116 4.9773 6.3652
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3�VO
2+� = 2�VAl

3−�

and hence we can estimate the position of the electron
chemical potential which gives charge neutrality as

�e = 1
5�Edef�VAl

3−� − Edef�VO
2+� + �Al − �O + kT ln4

9� .

Finally, therefore, we can estimate the effect of the finite size
errors on the concentrations one would calculate using the
uncorrected results as a function of cell size. This is shown in
Table V for a typical annealing temperature �T=1750 K�.
An error of four orders of magnitude is seen to result from
the finite size effect at the smallest cell size compared to its
infinite-size extrapolation. Note that these concentrations
likely represent quite a significant underestimate of the real
concentrations under similar conditions due to the neglect of
the vibrational contribution to the free energy.

The slow convergence of all these properties, and the
very large finite size errors on small supercells, more than
justify the need for the combination of large supercells and
extrapolation to the infinite limit. Furthermore, more com-
plex defects such as clusters of intrinsic defects and substi-
tutional dopants do not behave as point charges and must be
treated in even larger simulation cells to accurately remove
the effect of finite size errors. The need for a linear-scaling
formalism in the study of defects in such materials is there-
fore clear.

V. CONCLUSION

We have described a number of advances to the method-
ology underlying linear-scaling density-functional theory,
implemented here in the ONETEP code. We have presented a
unified approach to sparse algebra suited to the calculation of
the sparse matrix product operations typically encountered in
linear-scaling electronic structure theory, suitable across a
very wide range of system sizes and types, and which scales
well over a wide range of numbers of parallel processes. The
segments described, which are the segments of the rows as-
sociated with a given parallel process belonging to the col-
umns of a second given process, form a natural second level
of hierarchy over and above the atom-blocks that emerge
naturally from a basis consisting of atom-centered localized
functions. These segments allow use of optimally sized
dense algebra to increase performance which, along with a
framework for significant reduction in the communication,
demands of sparse matrix algebra.

We have applied this new scheme to a challenging cal-
culation of the size-convergence of the formation energy of

charged point defects in alumina ��-Al2O3�. Alumina is a
challenging material for first-principles simulation since its
combination of a low-symmetry structure with high ionic
charges means that large simulation cells must be used when
calculating properties of systems with localized charge, such
as point defects. The combination provided by the ONETEP

formalism, of high accuracy, equivalent to that of the plane-
wave approach, with linear-scaling computational effort, al-
lowing access to system sizes in the thousands of atoms, has
been shown to be sufficient to provide converged results for
the formation energies of intrinsic vacancies in this material.
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APPENDIX: NONLOCAL PSEUDOPOTENTIAL
MATRICES

The sparse algebra algorithms presented in this work
have been designed to treat matrices with different blocking
schemes �in terms of numbers of elements per block� for
rows and columns on equal footing and even mix the two.
This enables additional parts of the calculation to be treated
with distributed sparse matrix algorithms.

In standard Local Density Approximation �LDA� or
Generalized Gradient Approximation �GGA� calculations,

the Hamiltonian is composed of the contributions Ĥ= T̂

+ V̂Hlxc+ V̂nl, where T̂ is kinetic energy, V̂Hlxc is the total local
potential �Hartree, exchange-correlation and local ionic

pseudopotential contributions�, and V̂nl is the nonlocal ionic
pseudopotential expressed in standard Kleinman–Bylander
form32 as a sum over nonlocal projectors. These three opera-
tors correspond to sparse matrices T��, V��

Hlxc, and V��
nl in the

NGWF basis, given by

T�� = ���� − 1
2�2���	 ,

V��
Hlxc = ����V̂Hlxc���	 ,

V��
nl = �

i=1

Nproj �����i	��i���	
Di

,

where ��i	 are the nonlocal pseudopotential projectors, Di are
the Kleinman-Bylander denominators, and Nproj is the total
number of projectors in the system.

Calculation of the overlaps ��� ��i	 between NGWFs
and projectors is performed in ONETEP using the FFT-box
approach.33 The FFT-box is a localized box surrounding the
atom on which NGWF �� is located, of size typically of side
length 6R�, where R� is the largest NGWF radius required in

TABLE V. Dependence of the estimated concentrations of oxygen and alu-
minum vacancies per formula unit on system size through finite size errors
on formation energies.

System
�e

�eV� �VO
2+� per f.u. �VAl

3−� per f.u.

120-atom cell EVBM+1.15 1.56�10−9 2.34�10−9

960-atom cell EVBM+1.39 2.03�10−11 3.05�10−11

3240-atom cell EVBM+1.45 5.61�10−12 8.41�10−12

Infinite-size extrapolation EVBM+1.60 3.12�10−13 4.68�10−13
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the system. For strictly localized functions such as NGWFs
and nonlocal pseudopotential projectors, the FFT-box allows
the advantages of the use of Fourier transforms in plane-
wave DFT to be carried over to the linear-scaling formalism.

To calculate ��� ��i	 one evaluates the projector in recip-
rocal space by interpolating �i�q� on to the grid points GFFT

of the reciprocal-space FFT-box; then one performs the Fou-
rier transform on the FFT-box to obtain �i�r�; finally, the
points of �i�r� which overlap points of ���r� are extracted
from the FFT-box and used to find the overlap ��� ��i	.

Given that the relevant NGWF data for �� will generally
not reside on the same process as the projector data, there are
two possible approaches to the communications required for
this algorithm to work in parallel: either one could recreate
each projector on every parallel process holding a NGWF
overlapping that projector, or one could generate each pro-
jector once �on the process which holds its atom� and then
communicate each NGWF overlapping that projector from
the processes which hold them. In practice, the latter allows
a large saving in computational effort as long as the commu-
nications overhead of NGWF communication is less than the
computational time of generating the projectors many times
over on different processes.

We therefore use the latter approach to generate the
block-indexed sparse matrix P�i= ��� ��i	, whose columns i
correspond to projector kets ��i	 and whose rows � corre-
spond to NGWF bras ����. From this matrix, it is trivial to
also form Ri�= ��i ���	, the transpose of P�i. Then, using the
aforementioned sparse product algorithm, one can calculate
the nonlocal matrix as

V��
nl = �

i

P�iDi
−1Ri�.

A similar representation can be used to generate the non-
local pseudopotential contribution to the NGWF gradient ef-
ficiently. The nonlocal pseudopotential contribution to the
band structure energy Enl can be written in terms of the non-
local matrix as a trace of its product with the density kernel,
as Enl=V��

nl K��. To optimize the NGWFs, we require the
gradient of this quantity with respect to changes in the value
of the NGWF �� at position r, so we have

�Enl

����r�
= 2 �

i=1

Nproj

�i�r��
�

��i���	K��

Di
= 2 �

i=1

Nproj

�i�r�Qi
�.

�A1�

Again, Qi
�=Di

−1Ri�K�� can be constructed efficiently
through the use of the above sparse product algorithm.

Furthermore, since all the projectors �i which contribute
to the gradient for a given �� need to be constructed in the
same FFT-box centered on the atom of ��, another improve-
ment is possible. Note that in any system, there are generally
only a small number of different types of projector Nsp, since
for each atom type, there is a set of nonlocal channels with
angular momentum values l=0, . . . , lmax and for each chan-
nel, azimuthal angular momentum values m=−l , . . . , l.

For each projector species s, we denote by �s�G� the
projector evaluated in reciprocal space for a projector at the
origin in real space. To translate it to its correct position
within the FFT-box of ��, a phase shift of eiG·�Ri−R�� is ap-
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FIG. 10. Timings for routines evaluating �a� overlap matrices of nonlocal pseudopotential projectors and NGWFs, �b� nonlocal pseudopotential contribution
to Hamiltonian, and �c� nonlocal pseudopotential contribution to NGWF gradient. The systems tested are described in Table I and all runs are on all 64 cores
of 16 Intel Core i7 processors. Blue bars show the times without parallelization of the matrices required and red bars show the times using the new scheme.
Significant reduction in wall-clock time is obtained for all systems on all routines, especially for the nonlocal matrix, which is rendered negligible �all timings
are under 1 s using the new scheme�. The most demanding system is the densely overlapping oxide Al2O3, as this combines a high cutoff energy with large
spheres and many projectors per atom, so these results are off the displayed scale.
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plied in reciprocal space, where Ri is the position of the atom
of projector i and R� is the position of the atom of ��.

We can write Eq. �A1� in terms of a sum over species
and over projectors of that species, making the Fourier trans-
form required to construct �i�r� explicit,

�Enl

����r�
= 2F
�

s=1

Nsp � �
i=1

Nproj�s�

Qi
�eiG·ti���s�G�� . �A2�

The term inside the inner brackets is in effect a reciprocal-
space structure factor for each projector species, evaluated
on the reciprocal-space grid of the FFT-box. Constructing
this structure factor first and then multiplying it by the pro-
jector in reciprocal space allows one to avoid the work of the
large number of multiply-add operations of the whole pro-
jector in real space.

Figure 10 shows the computational time required for
evaluation of ��� ��i	, V��

nl , and �Enl /����r� in the test sys-
tems. Figure 10�a� shows the timings with the previous un-
parallelized approach, while Fig. 10�b� shows timings with
the system just described. The computational effort saved is
dramatic, particularly in large solid systems with large num-
bers of densely overlapping NGWFs and projectors. The ap-
proach is also very much more parallelizable. Figure 10�c�
shows the total time for evaluation of each of the above
quantities for the 960-atom alumina system on 32, 64, 128,
and 256 cores, demonstrating near-ideal scaling with 1 / P.
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