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A new method for calculating optical absorption spectra within linear-scaling density functional theory (LS-
DFT) is presented, incorporating a scheme for optimizing a set of localized orbitals to accurately represent
unoccupied Kohn-Sham states. Three different schemes are compared and the most promising of these, based
on the use of a projection operator, has been implemented in a fully functional LS-DFT code. The method has
been applied to the calculation of optical absorption spectra for the metal-free phthalocyanine molecule and
the conjugated polymer poly(para-phenylene). Excellent agreement with results from a traditional DFT code is

obtained.
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I. INTRODUCTION

Theoretical spectroscopy is a tool of growing importance
both in understanding experimental results and making pre-
dictions about new materials. Using simulation, it is possible
to analyze spectra to a level of detail which is hard to achieve
experimentally, for example by identifying which electronic
transitions correspond to a particular peak, or by observing
the effect of small changes in the electronic structure on the
optical spectra. The information obtained can help with the
interpretation of experimental results, or can be used in tandem
with experiment to enable the development of materials with
a particular property in mind.

Density functional theory (DFT)!? is a good initial frame-
work in which to calculate the energy eigenstates required for
such spectra. In practice, however, many systems of interest
are large in scale, and as such computationally expensive,
if not impossible, to treat with traditional approaches to DFT,
where the computational effort scales as the cube of the system
size. However, DFT can also be reformulated to scale only
linearly with system size, which requires the use of local
orbitals.>” This offers the opportunity to access much larger
system sizes, and if combined with theoretical spectroscopy, it
could become a very powerful tool. To this end, a method has
been developed for the calculation of optical absorption spectra
within linear-scaling DFT methods, which tackles some of
the challenges that arise due to the use of local orbitals.
It could also be extended to other types of spectroscopy in
future.

Linear-scaling methods use local orbitals which are op-
timized to describe the occupied states. There are two
approaches to the optimization of such orbitals: either via
the use of basis sets of purpose-designed atomic orbitals, or
via the minimization of total energy with respect to some
set of local orbitals which therefore become adapted to the
system in question, which is the approach followed in this
work. In both cases, this results in a basis which is unable
to represent the unoccupied states very well. This problem
is particularly noticeable in systematic linear-scaling methods
such as ONETEP,*"!! where the equivalence of the underlying
basis with plane-wave methods means that after optimization
of the local orbitals to minimize the total energy, the occupied
states are in very precise agreement with plane-wave results,
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but the unoccupied states may be significantly in error.
Therefore, in this work a new method is presented whereby a
second set of localized functions is optimized to describe the
unoccupied states. With this method, it becomes possible to
implement the calculation of optical absorption spectra using
Fermi’s golden rule.

Due to the inherent deficiencies in DFT, in particular the fact
that there is no theoretical relation between the Kohn-Sham
states and the true quasiparticle energies, this will of course
only be an approximate method for the calculation of optical
spectra. However, in practice reasonable agreement has been
seen with experiment, particularly when the scissor operator
approximation'>!? is employed. Furthermore, as the emphasis
within this work is on application to large systems, more
accurate methods such as the GW approximation'*'® are
prohibitively expensive, and so the approximation becomes
justified with respect to the aims of studying previously
inaccessible system sizes while maintaining a reasonable
standard of accuracy.

The relevant methodology will be briefly outlined in the
following section, highlighting in particular the reasons why
the unoccupied states are not calculated to a high level of ac-
curacy when the total energy is minimized. The methodology
for testing different conduction optimization methods and the
results obtained will be described. This will be followed by the
relevant details of the implementation in ONETEP. To conclude
the methodological section, a description of the calculation
of optical absorption spectra will be presented. In Sec. III,
results will be presented on both a molecular and an extended
system: metal-free phthalocyanine and poly(para-phenylene),
followed by the conclusion in Sec. IV.

II. METHODOLOGY

A. Linear-scaling density functional theory with local orbitals

It is well known that for quantum mechanical systems
containing a large number of interacting particles, physical
processes are usually only affected by their immediate lo-
cality, a fact which has been referred to as the principle of
“nearsightedness.”!” More precisely, it has been established
that the single-particle density matrix will decay exponentially
with respect to distance for systems with a band gap.'32° One
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therefore ought to be able to take advantage of this principle in
order to develop linear-scaling formalisms of DFT, and indeed
a variety of such methods exist, which have been the subject
of various reviews.?'~2* One such method is that employed in
ONETEP, which has been discussed in detail elsewhere®'? but
for which the key points will now be summarized.

One of the features necessary for the development of a
linear-scaling method is the use of localized basis functions;
in the case of ONETEP, a set of nonorthogonal generalized
Wannier functions (NGWFs)? are used, which are atom
centered and strictly localized within a set radius. These
NGWFs are represented in terms of a basis set of periodic
cardinal sine (psinc) functions,”* which can be related to
plane waves, and are optimized during the calculation to
create a minimal basis which is adapted specifically to reflect
the chemical environment of the system in question. This can
be seen from the elimination of basis set superposition errors,
which commonly occur in other approaches using localized
basis sets.?

To avoid the need for orthogonalizing extended orbitals, a
density matrix (DM) representation is adopted, rather than
explicit wave functions. The density operator is formally
defined as

p=2 fultm)(Wl, ()

where the {y,,(r)} are the Kohn-Sham orbitals, the f, are
their occupation numbers and the density matrix, p, is found
from the density operator using p.s = (¢o|P|¢g). For a
nonorthogonal basis the density operator can equivalently be
written in the following separable form:2%?’

p= 1¢a) K (], @
af

where K% is the density kernel and {¢,(r)} are the NGWFs.
In this form, when combined with the locality of the NGWFs,
it becomes possible to truncate the density kernel. The
Hamiltonian, kernel, and overlap matrices then become sparse
and so can be multiplied together in order-N operations.
The DM is required to be idempotent, using a combination
of the McWeeny purification transformation?® and penalty
functionals.’%-?8

In this way ONETEP combines the high accuracy of plane-
wave calculations via the use of a psinc basis set, with the speed
of minimal basis approaches via the use of in situ optimized,
localized NGWFs.?” Furthermore the NGWF optimization
process also allows for insight into the local chemical
environment which is reflected in their final state. ONETEP
is particularly suited to lower dimensional systems, as empty
space which is not covered by the atom-centered NGWFs is
virtually free from the point of view of computational effort. It
should also be noted that ONETEP is designed for application to
large systems, either with large unit cells or using the supercell
approximation, so that only a single k point need be treated.
This is chosen to be the I' point, which has the added benefit
that the Kohn-Sham eigenstates and therefore the basis set and
related quantities can be chosen to be real.

In a standard ONETEP calculation the energy and density are
determined from the DM and NGWFs, while the individual
eigenstates are not explicitly considered. They can, however,
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be recovered by a single diagonalization of the Hamiltonian
matrix in the basis of NGWFs at the end of a calculation,
but only the occupied Kohn-Sham orbitals are accurately
represented. This is because the NGWF optimization is solely
focused on minimizing the band structure energy of the
occupied states, resulting in a basis that does not accurately
represent the unoccupied states.’® In practice some of the
lower lying conduction states are close to the correct values,
particularly when they are of a similar character to the
valence states; however conduction states which are higher
in energy are poorly treated and some can be completely
absent. Therefore in order to correctly calculate densities of
states, band structures, and in particular spectra, where matrix
elements between valence and conduction states are needed,
it becomes necessary to consider the optimization of a second
set of NGWFs.

It should be noted here that various methods exist for cal-
culating electronic excitation energies using the GW method,
which avoid the need for explicitly summing over unoccupied
states in order to increase computational efficiency.*'* While
this would appear to invalidate the need for a method
of accurately calculating the unoccupied states, it is still
necessary to have a complete basis in order to define a
projection operator onto the conduction manifold that requires
the identity operator. Therefore even with the existence of such
approaches it is important to have a method of creating a basis
which is able to accurately represent both the occupied and
unoccupied states.

B. Methods for calculating unoccupied states

Possible methods for optimizing a new set of NGWFs to
represent the conduction states include the folded spectrum
method, 3¢ the shift-invert method,’’ and the use of a
projection operator. These differ principally by the form of
the eigenvalue equation they attempt to solve to obtain the
excited states.

A toy model was created within which these methods were
compared. It was required to imitate the main features of a
systematic local-orbital method, while remaining as simple as
possible. This included the use of an iterative minimization
scheme using conjugate gradients, with a preconditioning
scheme equivalent to that used in ONETEP,>* a range of
localized basis sets, of which B splines®® were found to be
the most accurate, and simple one-dimensional potentials.

(a) Folded spectrum. The folded spectrum method involves
folding the energy spectrum of a matrix H around a reference
energy E.f, where the spectrum of H is found from the
eigenvalue equation Hx = ex. This leads to a new eigenvalue
equation which the eigensolutions of the original equation also
satisfy:

(H — Eref1)’x = (€ — Eper)’x. 3)

The smallest eigenvalues of this new matrix are related to
those of H nearest E., so that by setting E.¢ to a value
near the center of the energy range covered by the conduction
states, they can be found by solving the new eigenvalue
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FIG. 1. (Color online) Schematics comparing the three methods for the calculation of unoccupied states. The original spectrum is shown on
the x axis and the transformed spectrum on the y axis, with thick black curves depicting the relationship between the two sets of eigenvalues.
The occupied states are shown as (red) circles and the unoccupied states as (blue) squares, with the reference energy arbitrarily chosen to be in

the gap for the folded spectrum and shift invert methods.

equation. It can also be generalized to account for the use
of a nonorthogonal basis set,>” giving the following:

(H — EefS)S™'(H — ErfS)x = (€ — Erep)’Sx.  (4)

This is illustrated by Fig. 1, which contains a schematic
showing the effect of the folded spectrum method on a set of
example eigenvalues. This method has been used previously
for example to study the conduction band minimum for silicon
within the tight-binding method,*® as well as in studies of
quantum dots.*'*?

(b) Shift invert. Shift invert is another method of spectral
transformation which can be used to find extremal eigenvalues.
Starting from a given generalized eigenvalue equation Hx =
€Sx, the Hamiltonian is shifted with respect to some reference
energy and then inverted, giving

(H — ErefS)'Sx = (€ — Eper)”'x. §))

However, even if both S and H are Hermitian, (H — E.sS)”"'S
will not generally be Hermitian,*>** which could result in
decreased numerical efficiency. The most straightforward
method of ensuring that the transformed Hamiltonian is
Hermitian is to pre-multiply by the overlap matrix, giving

S(H — EefS)'Sx = (¢ — Erer)”'Sx. (©6)

For this case, the eigenvalues of the original matrix will be
calculated in descending order, starting from the reference
energy, as demonstrated in Fig. 1, which contains a diagram
showing the transformation of a set of example eigenvalues
following the application of shift invert. In order to correctly
calculate the conduction states, the reference energy should
therefore be set between the highest required conduction band
and the state immediately above (shift invert variant +). One
way to avoid this problem is to multiply the new Hamiltonian
by minus one, reversing the order of calculation and therefore
allowing the conduction states to be calculated in ascending
order starting from the LUMO (lowest unoccupied molecular
orbital), simply by setting the reference energy to be just above
the HOMO (highest occupied molecular orbital) (shift invert
variant —).

The shift invert method can suffer from stability problems,
which can be reduced by adding an imaginary component,
iu, to the reference energy; however this means that the
Hamiltonian once again loses its Hermiticity, creating the
possibility of imaginary eigenvalues. This can be avoided by
combining two shift invert transformations, such that a small

positive imaginary component is added to the reference energy
for the first transformation and a negative component is added
to the second, thereby eliminating all imaginary components.
This gives the final generalized eigenvalue equation:

+ M2)S]7ISX = (€ — Err) 2x.
7

In this case the eigenvalues appear in an unfavorable order,
such that as the transformed eigenvalues increase in energy,
|e — Ecf| decreases; i.e., the eigenvalues farthest from E ¢ will
be found first. Multiplying the Hamiltonian by minus one will
reverse the order, returning to the situation where eigenvalues
closest to the reference energy are found first (shift invert
variant i). This resembles the folded spectrum method in that
the conduction and valence states again become mixed, and so
a careful choice of reference energy is needed.

(c) Projection. The density operator is defined according
to Eq. (1), where the f, are the occupation numbers which
are assumed to be 1 for valence states and O for conduction
states within the test program. The density operator p is
a projection operator onto the subspace of states occupied
by the valence states, so that projecting p onto H and
solving the new eigenvalue equation will give only the valence
eigenstates. Alternatively, projecting with 1 — p, where the
1 is defined in the psinc basis, will leave only contributions
from the conduction states. This is illustrated in Fig. 1, which
contains a schematic demonstrating the effect of projecting the
Hamiltonian in this manner on a set of example eigenvalues.

One problem which can arise due to the imposition of
localization constraints during a calculation is that A and p
may not commute exactly, which will result in the projected
Hamiltonian no longer being Hermitian. This can be overcome
by projecting twice, so that the expression

S[HS™'H — 2E,H + (E.

ref

H—pHp ®)
is used to form the new projected Hamiltonian. However,
projecting the Hamiltonian in this manner leads to an energy
spectrum where all the valence energies are equal to zero,
which is only desirable when all the conduction energies are
negative and so more favorable in energy than the zeroed
valence states. To avoid this problem the energy spectrum
is shifted so that all the valence states become higher in energy
than the conduction states. This shift must be greater than or
equal to the highest conduction energy, the value of which can
be easily found using conjugate gradients, as only the highest
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energy is required. The projected Hamiltonian can be modified
to include the shift, o, so that the final operator is

H—p(H —0)p. )

In practice, the shift o is set to be higher than the highest
conduction energy, so that in general it remains constant even
when there are changes in the highest eigenvalue, adding
stability to the minimization process. If necessary, it can also
be updated during the calculation.

C. Results and discussion

These five methods were tested and compared for a system
with a Kronig-Penney potential®® using the block update
preconditioned conjugate gradients method.’* By applying
the appropriate level of preconditioning and selecting a good
choice of reference energies, the results in Table I were
obtained. No shift was applied for the projection method. In
attempting to choose good values for the reference energies,
it was verified that a poor choice can result in significantly
slower convergence. For all of the methods the total conduction
energies calculated were accurate to within 1079 Ha of the
correct result.

The results show that the different methods are fairly similar
in terms of both speed and accuracy, with the projection
method as the clear favorite. An important requirement of
the selected method is the need for linear scaling. While this is
hard to test within this basic implementation due to the lack of
localization and sparse matrix multiplication, it can be shown
that with the appropriate level of preconditioning, the number
of iterations required for increasing system size remains
approximately constant for the projection method. Combined
with the fact that the method mainly consists of matrix
multiplications, it seems likely that favorable scaling could
be achieved when implemented within local-orbital methods.

The reason for the relatively large number of iterations
required for the folded spectrum method can be seen by
considering the condition number, which will be higher for
the folded Hamiltonian. Using the approximate expression?!

6min) i (10)

~ (Emax -
€gap

it is clear that the largest eigenvalue €, Will be much bigger
for the transformed Hamiltonian, and thus so will the condition

TABLE I. Results for the different conduction methods, showing
averages for time taken and the number of iterations for a total of
100 calculations with randomly generated starting guesses for the
eigenvectors. Shift invert 4+, —, and i refer to the three variants of
the shift invert method discussed in the text. The first form of the
projection method was applied, without the use of a shift.

Avg. Time Avg. Number
Method Taken (s) of Iterations
Folded spectrum 2.39 182
Shift invert + 2.34 158
Shift invert — 2.23 170
Shift invert i 5.48 463
Projection 1.21 36
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number, x. Therefore when using an iterative minimization
scheme, convergence will be slower compared to solving the
original equation.

For both the shift invert and folded spectrum methods, the
choice of reference energy is particularly important. For the
folded spectrum method, for example, if it is too low then
unwanted valence states will be recalculated, and if it is too
high then unwanted high energy conduction states will need
to be calculated in order to get the lowest conduction states.
Additionally a poor choice of reference energy will result in
slower convergence for the shift invert method. For example,
if the reference energy is too close to a given eigenvalue,
such that the difference between E and € is very small
compared to the distance to other eigenvalues, the magnitude
of the eigenvalue for the new system will be much greater
than all other eigenvalues. This will result in a high condition
number, so care must be taken to find a good reference energy.
The projection method, however, has the advantage that no
reference energy is required and therefore it is more automatic.
Additionally, the density matrix is already calculated within a
local-orbital calculation and so can easily be reused.

For the case of all three methods, the accuracy of the
conduction states will clearly be affected by the accuracy
with which the potential has been calculated. However, the
projection method will also be affected by the accuracy of the
valence density matrix, whereas the folded spectrum and shift
invert methods will not. This will be particularly significant
when the localization and truncation approximations required
for linear-scaling behavior are applied.

D. Implementation in ONETEP

The methods outlined above were applied directly to the
solution of an eigenvalue equation. However in a real ONETEP
calculation, the system is solved using a density matrix
scheme, within the representation of a basis of NGWFs. It is
therefore necessary to adapt the methods described above for
use within this context. As the projection method has proven to
be the most favorable, this is the one which was subsequently
focused on.

Two sets of NGWFs are now required, {|¢, )} for the valence
states, and {|x,)} for the conduction states. The ground-state
ONETEP calculation already provides access to the valence den-
sity matrix p and kernel K, overlap matrix S4, and Hamiltonian
Hy. The additional conduction matrices will be labeled as
follows: S, is the conduction overlap matrix, T is the valence-
conduction cross overlap matrix defined as Tyg = (Po|xs),

H, is the (unprojected) conduction Hamiltonian, H™ is the
projected conduction Hamiltonian, Q is the conduction density
matrix, and M is the conduction density kernel. These are all
represented by atom-blocked sparse matrices,'%*® such that
all matrix-matrix operations are possible in asymptotically
linear-scaling computational effort, due to the strict truncation.
The final expression for the projected conduction Hamilto-
nian, including the shift, o, is therefore defined as follows:

(H;()roj)aﬁ — <Xot|[:I — Ia(l:l — 0');5|Xﬁ>
= (Hy)op — (T'K HyK T)og + 0 (TTK Sy K T)ap.
(11)
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The energy expression E = tr{ MH} ] can then be minimized
by optimizing both the set of conduction NGWFs and the
conduction kernel. Extra terms will be needed in the NGWF
gradient, but otherwise this follows the same procedure
as a standard ONETEP calculation, without the need for
self-consistency. Once the set of conduction NGWFs has
been optimized, the Hamiltonian can be diagonalized in a
joint basis of valence and conduction NGWFs to give an
improved eigenvalue spectrum. This allows eigenvalues and
other properties to be calculated in a basis that is capable
of representing both the valence and conduction states of the
system.

E. Calculating optical spectra

As stated in the introduction, the calculation of experi-
mental spectra in general and optical spectra in particular
can be highly useful both in predicting and understanding
experimental results and can be applied to a diverse range
of problems. The method followed for the calculation of
optical absorption spectra is that*’ applied in CASTEP,*® a
cubic-scaling plane-wave pseudopotential (PWPP) DFT code
which can use the same pseudopotentials as ONETEP, and so
is ideal for comparison of results. The method employed is
described briefly below.

Starting from time-dependent perturbation theory, one can
derive Fermi’s golden rule, an expression giving the probability
of a particular electronic transition. It involves a joint density
of states between valence and conduction states, which is
weighted by optical matrix elements. Matrix elements with
a value of zero indicate that a given transition is forbidden,
whereas nonzero matrix elements define the strength of the
transition. These matrix elements take the form of a complex
exponential, which in the long-wavelength limit can be related
to position matrix elements using the dipole approximation,
where the exponential is expanded in a Taylor series and terms
above first order are neglected. In this manner, the imaginary
part of the dielectric function can be written as

2 2
e2(@) = = 5 |(w

A v 2 C v
Qe Q'l'|1//k>| 6(Ek_Ek_hw)’ (12)

Kk,v,c

where v and ¢ denote valence and conduction bands respec-
tively, [vyy) is the nth eigenstate at a given kK point with
a corresponding energy E', Q2 is the cell volume, and §q
is the direction of polarization of the photon and %w its
energy. In principle this includes a k point sum over the
entire Brillouin zone; however as with ground-state ONETEP
calculations, it is assumed that a large enough supercell will
be used such that only the I point need be considered. As
the system size increases, this will become an increasingly
exact approximation, so that the accuracy of the density of
states will improve for bigger systems. This could be extended
in future using methods for interpolating band structures in
ONETEP that will be published elsewhere. For the purposes of
this work, however, all calculations have been restricted to the
I" point only. From the imaginary part of the dielectric function
one can then also calculate the real part using the appropriate
Kramers-Kronig relation.
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In both ONETEP and CASTEP periodic boundary conditions
are used, in which the position operator is known to be
undefined. Due to the strict localization of the NGWFs in
ONETEP, it is possible to calculate position matrix elements
between eigenstates for molecules, providing the NGWF radii
are sufficiently small such that no NGWFs associated with
the molecule overlap with any NGWFs associated with its
periodic image. However for periodic systems it becomes
necessary to use the momentum operator. Momentum matrix
elements can be easily related to position matrix elements by
considering the commutator with the Hamiltonian, but when
nonlocal pseudopotentials are being used, one must be careful
to include the commutator between the position operator and
the nonlocal potential. The relation is thus written*’

1 1 N
(brIrli) = —(brIPIdi) + o —(SsI[Varrlidi).  (13)

In practice, the commutator term is calculated using the
following identity:>°

(Vi + vk,)[ / e kY, r)e T dr dr/}
=i / e KT Ve, )’ — rVy(r,r)]e® Tdr dr', (14)

where the derivative can either be calculated directly or using
finite differences in reciprocal space. The matrix elements are
thus calculated in this manner and used to form a weighted
density of states, which is smeared using Gaussian functions.

For the purposes of comparison with experiment, it is
sometimes desirable to make use of the scissor operator,
whereby the conduction band energies are rigidly shifted
upward such that the DFT Kohn-Sham band gap is equal to
experimental values. While this is not an ab initio correction,
in practice relatively good agreement can be found with
experiment in this manner for many systems without the need
for more computationally intensive methods, such as the GW
approximation, although there will be a number of occasions
when it becomes necessary to use less approximate methods.

III. RESULTS AND DISCUSSION

A. Metal-free phthalocyanine

As stated in Sec. II A, ONETEP is particularly efficient
at treating molecules, and so metal-free phthalocyanine was
chosen as a good test system on which to apply the conduction-
state method. As it contains only 58 atoms, calculations could
also be performed using CASTEP, which has been used for
all the traditional PWPP DFT results given. Corresponding
plane-wave/psinc kinetic energy cutoffs and identical norm-
conserving pseudopotentials were used for both codes. In all
calculations the local-density approximation (LDA) exchange-
correlation functional was used. Phthalocyanines and their
derivatives are commonly used as dyes and are also of interest
in a number of other fields, including use in photovoltaic cells>!
and molecular spintronics®*> and so metal-free phthalocyanine
also provides an interesting test case for the calculation of
optical absorption spectra.

The atomic coordinates for metal-free phthalocyanine were
taken from neutron diffraction data®® with Cy, symmetry and
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FIG. 2. Schematics showing the structures of the frans (left) and
cis (right) isomers of metal-free phthalocyanine. C atoms are shown
in white, N atoms in gray, and H atoms in black.

the inner H atoms attached to opposite N atoms. Additional
symmetry constraints were then applied by averaging the
atomic positions to give the higher symmetry D, with
the inner H atoms attached to both opposite and adjacent
N atoms (trans and cis forms, respectively), and finally a
geometry-optimized structure was calculated using traditional
DFT, which also has a trans-D,;, symmetry but differs in
bond lengths from the other D,, structure. Diagrams of
the trans and cis forms are shown in Fig. 2. Table II
shows the ground-state energies for each structure relative
to the geometry-optimized result, with the higher symmetry
structures lower in energy. Very good agreement is achieved
between the ONETEP and traditional DFT results. Both the
ONETEP and PWPP calculations were performed at a kinetic-
energy cutoff of 1046 eV, with the ONETEP valence NGWFs
at a fixed radius of 12 bohrs, with one NGWF per H atom,
and four each per C and N atom. Sixteen conduction states
were optimized, with four conduction NGWF:s for each atomic
species, and a radius of 16 bohrs was used for the density
of states (DOS) calculations, while 13 bohrs was sufficient
to achieve almost perfect agreement with traditional DFT
for the optical absorption spectra. This difference in NGWF
radii required for good convergence of DOS and optical
absorption spectra is discussed in Sec. IIIC. The DOS for
the geometry-optimized structure is shown in Fig. 3, which
compares ONETEP results both with and without conduction
NGWFs to those found using the PWPP method. Without the
conduction NGWFs, the ONETEP results differ greatly from the
PWPP results, but with the addition of conduction NGWFs,
excellent agreement with the PWPP method is achieved.
A state-by-state comparison confirmed the existence of a

TABLE II. Comparison between ONETEP and PWPP ground-state
total energies for four different structures of metal-free phthalocya-
nine, relative to the lowest energy geometry-optimized structure. The
energy difference between the ONETEP and PWPP results for the
geometry-optimized structure is 0.163 eV.

E — Egom / €V
Structure ONETEP PWPP
Cy, 1.554 1.553
CiS—Dz;, 1.875 1.874
trans-Doy, 0.952 0.951
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FIG. 3. (Color online) Density of states comparing results from
ONETEP with PWPP results for the geometry-optimized structure of
metal-free phthalocyanine, plotted with a Gaussian smearing width
of 0.1 eV, using conduction NGWEF radii of 16 bohrs. The DOS is
truncated after the first 16 conduction states, and the ONETEP + cond
curve shown is calculated in the joint valence-conduction NGWF
basis.

one-to-one correspondence between the ONETEP and CASTEP
conduction eigenstates.

Optical absorption spectra were then calculated using both
the position operator and the momentum operator (including
the nonlocal commutator) for all four structures, and in all
cases the two methods agreed almost perfectly with the PWPP
results for the energy range considered. The addition of a
greater number of conduction states is unnecessary for this
energy range, confirming that the calculation of unbound
conduction states will not always be needed.

It should be emphasized here that the aim of this work
is to calculate absorption spectra within DFT and so find
good agreement with conventional DFT implementations,
rather than go beyond DFT and achieve good agreement with
experiment. However, useful insight can be achieved through
comparison with experiment, and so the absorption spectra for
the four structures were compared with experimental results in
solution,’' applying a scissor operator of 0.4 eV, and arbitrarily
scaling the height of the imaginary part of the dielectric
function to facilitate easier comparison with experiment, as
shown in Fig. 4. The spectra are indeed distinguishable, despite
the very small differences in the atomic structures.

It is also possible to identify the transitions responsible
for the peaks, with the split Q-band peaks (indicated in
Fig. 4) being due to HOMO-LUMO and HOMO-LUMO + 1
transitions and the degree of splitting within the peak there-
fore due to the energy difference between the LUMO and
LUMO + 1 bands. It is accepted that the lower symmetry of
the metal-free phthalocyanine structure as compared to metal
phthalocyanines is the cause for this Q-band splitting, which
is not observed for metal phthalocyanines. This agrees with
the observation that the higher symmetry trans-Dy;, structure
exhibits a lower degree of splitting than the trans-C,;, structure.
The Q-band splitting for the geometry-optimized structure is
0.02 eV, which is significantly less than the experimental value
of 0.09 eV, implying that the LDA is not sufficiently accurate
to calculate the correct structure.
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FIG. 4. (Color online) The imaginary component of the dielectric
function calculated in ONETEP and plotted for four different structures
of metal-free phthalocyanine as indicated on the graph (“geom” refers
to the geometry-optimized structure). Results from the PWPP method
are indistinguishable and so not plotted. A Gaussian smearing width
of 0.01 eV is used, with conduction NGWF radii of 13 bohrs and a
scissor operator of 0.4 eV. Experimental results in solution (labeled
“exp”) are also included with the peaks shown as vertical lines for
clarity and the calculated results vertically scaled arbitrarily for easier
comparison. The position of the Q bands is indicated below the x axis.

There have already been a number of studies™*’ of
the electronic structure and absorption spectra of metal-free
phthalocyanine, with which the above results are consistent,
confirming that this is a useful system to demonstrate the
ability of theoretical optical absorption spectra as implemented
here to distinguish between similar geometries.

B. Poly(para-phenylene)

Conjugated polymers such as poly(para-phenylene) (PPP)
have a wide range of applications due to their electrolumi-
nescent properties, including LEDs and solar cells,’*%° and
so this also provides an interesting system to study as a test
case for the calculation of optical absorption spectra. As a
periodic system, it is also ideal for testing the scaling of the
projection method, by increasing the size of the unit cell and
comparing the time taken to calculate the conduction states.
The structure for two unit cells was obtained by performing a
geometry optimization with a PWPP code using the structure
of Ambrosch-Draxl et al.®!' as a starting guess, with the final
structure shown in Fig. 5. A cutoff energy of 1115 eV was
found to be necessary for good convergence of the results.

FIG. 5. Schematic showing the structure of a unit of poly(para-
phenylene) from two directions. C atoms are shown in white and H
atoms in black.
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FIG. 6. (Color online) Graph showing the scaling of ONETEP con-
duction calculations for increasing chain lengths of PPP. Calculations
were performed on 8 nodes and therefore a total of 32 cores. The total
time taken for ONETEP is approximately linear up to 1000 atoms and
the number of NGWF iterations required for convergence shown in
the inset is shown to be constant with an increasing number of atoms.

All calculations were performed at the I point only, with no
k point sampling, to allow for direct comparison between the
two codes. Ground-state calculations were first performed with
one NGWF per H atom and four NGWFs per C atom and a
fixed radius of 10 bohrs. Conduction calculations were then
performed using four NGWFs for all atomic species with a
fixed radius of 14 bohrs. The number of conduction states
calculated was set to include all negative eigenvalues for the
smallest system (corresponding to two unit cells of PPP) and
increased linearly with system size. Figure 6 shows the scaling
behavior of ONETEP for the conduction calculation. Neither
the valence nor conduction density kernels were truncated;
however, the behavior of ONETEP is shown to be approximately
linear up to 1000 atoms, and it is expected that this trend will
continue up to larger system sizes.

The density of states was plotted for varying chain lengths
of PPP, with the graph for 120 atoms shown in Fig. 7. As
with metal-free phthalocyanine, excellent agreement with the
PWPP results is achieved for the conduction calculation.
The imaginary component of the dielectric function was also
calculated for varying chain lengths, using the momentum
operator formulation. The result for 120 atoms is shown
in Fig. 8. Again, nearly perfect agreement with the PWPP
method was achieved with the conduction NGWF basis,
whereas the valence NGWF basis only calculation showed
big discrepancies not only in the positions of the peaks, but
also in the relative strengths.

C. Limitations of the method

The projection method has proven to be a good method of
optimizing a set of NGWF:s that are capable of representing the
conduction states to a good degree of accuracy. However, there
are some limitations to the method, which will be discussed
below.

One limitation which cannot be overcome is the inability to
represent completely delocalized and unbound states, which
is to be expected with a localized basis. With increasing
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FIG. 7. (Color online) Density of states calculated using ONETEP
and a PWPP code for 120 atoms of PPP with conduction NGWF radii
of 14 bohrs and a Gaussian smearing width of 0.1 eV. The ONETEP +
cond curve is from the joint valence-conduction NGWF basis, and
has been plotted so that only those conduction states which have been
optimized are included. The same number of states have been plotted
for both the ONETEP and PWPP curves.

NGWEF radii the eigenvalues tend toward the correct Kohn-
Sham eigenvalues; however when one uses such large radii
the prefactor of the calculation becomes dominant, so that
even though the overall behavior is still linear scaling, the
crossover point at which the method becomes quicker than
cubic-scaling codes will occur at systems with a greater
number of atoms. However, for applications considered here,
notably the calculation of optical absorption spectra, often
only lower energy bound states are required, as many of the
interesting features in optical spectra are transitions between
bands close to the gap and one is interested in a relatively
low energy range. Therefore in practice this limitation on the
method is less serious than it first appears to be. Additionally,
it has been observed that the lower energy conduction states
converge with respect to NGWF radius faster than those with
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FIG. 8. (Color online) The imaginary component of the dielectric
function calculated using a traditional PWPP code and ONETEP both
with and without a conduction calculation for 120 atoms of PPP.
Conduction NGWF radii of 14 bohrs and a Gaussian smearing width
of 0.2 eV are used.
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FIG. 9. (Color online) Demonstration of the appearance of a local
minimum, where the rms gradient increases for a period while the
energy continues to decrease. This was for the geometry-optimized
structure of metal-free phthalocyanine at a radius of 18 bohrs with
four extra states being optimized.

higher energy, and so if the lower energy bound states only
are considered, it no longer becomes necessary to use such
large NGWF radii to achieve a good level of convergence
in the optical absorption spectra. It was for this reason that
smaller conduction NGWF radii were used for the absorption
spectra compared to the DOS of metal-free phthalocyanine, as
presented in Sec. IIT A.

It has also been observed that it is sometimes possible to
become trapped in a local minimum when optimizing the
conduction orbitals. This behavior is characterized by slow
convergence of the conduction NGWFs, wherein the rms
gradient stagnates or increases while the energy continues to
decrease; or by sharp jumps in the energy with increasing
conduction NGWF radii, rather than the expected smooth

0.2 T T

T T
4 extra states —eo—
12 extra states ---m---

log1o((E-Epwpp) / €V)

10 12 14 16 18 20 22
NGWF radii / bohr

FIG. 10. (Color online) Comparison of conduction energy con-
vergence with respect to conduction NGWF radii for different
numbers of extra states, for the geometry-optimized structure of
metal-free phthalocyanine. The energy difference is calculated with
respect to the traditional PWPP result. A discontinuity appears in
the curve at 18 bohrs when four additional states are optimized,
demonstrating problems with local minima, while optimizing 12
additional states is sufficient to overcome the problem.

165131-8



CALCULATING OPTICAL ABSORPTION SPECTRA FOR ...

TABLE III. Initial energies and values after 5 iterations both with
and without optimizing extra states for three different eigenstates of
the geometry-optimized structure of metal-free phthalocyanine with
conduction NGWEF radii of 14 bohrs. States shown in bold are those
which are among the 16 lowest states, and thus being included in the
conduction NGWF optimization. Without the optimization of extra
states, the LUMO + 14 state is not optimized and so remains high in
energy, while with the addition of four extra states, the correct order
is found and the LUMO + 14 is significantly lowered in energy.

State Initial 0 Extra States 4 Extra States
LUMO + 14 0.628 >0.368 —0.042
LUMO + 15 0.355 0.045 0.039
LUMO + 16 0.259 0.082 0.061

convergence. Examples of both of these features can be
seen in Figs. 9 and 10, respectively. This behavior has
been seen to occur due to an unfavorable ordering of the
energy eigenstates in the unoptimized basis of NGWFs, so
that the NGWFs are optimized for some eigenstates which
will eventually be higher in energy at the expense of those
which will eventually be lower in energy. This behavior is
strongly system dependent; however it can be overcome by
initially optimizing a greater number of conduction states
than required, then reducing the number of states to that
actually required, regenerating the conduction density kernel,
and proceeding with the calculation. This first stage aims to
overcome the problem of poor initial ordering of states, while
the second stage will allow for closer optimization of those
states actually required. This is illustrated by Table III, where
the LUMO + 14 state is initially much higher in energy
and so if no additional states are included the NGWFs are
not optimized to represent it, so that it ends up significantly
higher in energy than other states. If, however, four additional
states are included, this is sufficient to reorder the states and it
becomes lower in energy.

As well as the above-mentioned problems, there are a
number of parameters which require more careful consider-
ation when selecting appropriate values than in a ground-state
ONETEP calculation, where they can be set automatically. This
includes the number of conduction states one is trying to
represent, the number of NGWFs one chooses for each atom,
the number of additional states to be optimized, and the number
of iterations for which these extra states are optimized. Some of
these parameters, such as the number of iterations to perform in
the first stage of the local minima avoiding scheme, have less of
an effect on the final result, but for many of these parameters,
the effect of different values appears to be strongly system
dependent. One must therefore perform careful convergence
tests to ensure that the resulting states do not correspond to
any local minima. This will require variation of the number
of NGWFs per atom, convergence with respect to NGWF
radii, and an increase in the number of extra conduction
states requested, until consistent results are achieved, with
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a smooth curve of energy against NGWF radii, and sensible
convergence of the NGWFs during a calculation. By following
these strategies one can become confident that accurate results
have been achieved.

It should also be noted that the iterative energy mini-
mization scheme used here requires the presence of a band
gap, which for the conduction calculation translates as a
gap between the highest optimized conduction state and
the lowest unoptimized conduction state. As one approaches
the continuum of conduction states, this gap will become
increasingly small, which could result in poor convergence
behavior.

Finally, it is observed that while problems have been
encountered with the projection method, a clear strategy has
been outlined both for identifying and resolving them.

IV. CONCLUSIONS

In conclusion, a methodology has been presented for the
accurate calculation of the unoccupied Kohn-Sham states
within a linear-scaling DFT context. Excellent agreement
was achieved with traditional PWPP results for lower lying
conduction states, although the use of localized basis functions
is not ideal for higher energy delocalized conduction states.
Additionally, a strategy has been outlined for both identifying
and avoiding the problem of local minima which have been
seen to occur.

The existence of a localized basis set capable of represent-
ing the Kohn-Sham conduction states in ONETEP has enabled
the calculation of optical absorption spectra using Fermi’s
golden rule as a first approximation. This methodology allows
one to take advantage of large-scale linear-scaling calculations
and extract useful information, which can be compared to
experimental results and aid with the interpretation of those
results. In particular, the ability to identify the transitions
responsible for a given peak and compare spectra from very
similar atomic structures has been demonstrated, through the
application to both a molecular and an extended system.
Furthermore, it also forms the basis of future extensions
both to more accurate methods of calculating optical spectra,
and to calculating other types of spectra, such as electron
energy loss spectra and x-ray absorption and photoemission
spectra.
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