
Localised spherical-wave basis set for O(N) total-energypseudopotential calculationsP.D. Haynes and M.C. PayneTheory of Condensed Matter, Cavendish Laboratory, Madingley Road, Cambridge,CB3 0HE, U.K.We consider a localised spherical-wave basis set suitable forO(N) total-energy pseudopotential calculations. The basis set isconveniently truncated using a single parameter, the kinetic energycut-o� used with the plane-wave basis. We present analytic resultsfor the overlap integrals between any two basis functions centredon di�erent sites, as well as for the kinetic energy matrix-elementswhich can therefore be evaluated accurately in real-space. Amethod for analytically performing the projection of the basisstates onto angular-momentum states required for the use ofnon-local pseudopotentials is also presented.PACS numbers: 71.10.+x, 71.20.Ad1 IntroductionTraditional total-energy calculations using density-functional theory (DFT)require a computational e�ort and quantity of memory which scale as thecube and square of the system size N (i.e. the number of atoms or the vol-ume of the system) respectively. Therefore as systems of increasing size areconsidered, the computational resources are rapidly exhausted, and a ten-fold increase in computing power will roughly only double the size of systemwhich can be studied. However, the complexity of the problem within DFTscales only linearly with N , and there has therefore been considerable inter-est in developing new schemes for performing these calculations in which thecomputational e�ort and memory required also scale linearly: so-called O(N)methods.One elegant and popular choice of basis in O(N3) calculations has been theplane-wave basis. However, because of the extended nature of these basis func-tions they cannot be used in O(N) calculations, and a di�erent choice has toPreprint submitted to Elsevier Preprint 11 March 1997



be made, in which the basis functions are localised in real space. Examples in-clude truncated Gaussian orbitals, orbitals based on pseudoatomic wave func-tions and representing the functions on a real-space grid. An O(N) methodresults from the combination of a localised basis set and exploitation of thefact that local properties of a system (e.g. the density n(r)) depend only uponthe electronic states in the vicinity of the point of interest [1].In this paper we present a set of localised functions which are related to theplane-wave basis set and share some of its attractive features. A signi�cantproblem associated with localised basis functions is that they are not in generalorthogonal, so that as the size of the basis is increased, the overlap matrixbecomes singular. We demonstrate that the basis functions introduced hereare orthogonal, by construction, to others centred on the same site, and thatthe overlap matrix elements for functions centred on di�erent sites can becalculated analytically, and hence evaluated e�ciently and accurately whenimplemented computationally.Another disadvantage of using basis functions localised in real-space arises inthe calculation of the action of the kinetic energy operator. To take advan-tage of the localisation it is necessary to focus on real-space and calculate allquantities in that representation. However, since the kinetic energy operatoris diagonal in reciprocal-space, the kinetic energy matrix elements are mostnaturally calculated in reciprocal-space. Methods to evaluate the kinetic en-ergy using �nite-di�erence schemes can be inaccurate. With this new choiceof basis, the matrix-elements of the kinetic energy operator between any twofunctions can also be calculated analytically, thus overcoming this problem.One �nal advantage arises in the inclusion of non-local pseudopotentials whichtraditionally required signi�cant computational e�ort. We present a methodof obtaining the matrix-elements of the non-local pseudopotential operator byperforming the projection of the basis function onto a core angular-momentumstate analytically.
2 Origin of the basis functionsIn the pseudopotential approximation, the core electrons and strong ionicpotential of the atom are replaced by a much weaker potential in which theremaining pseudovalence electrons move. The pseudovalence states no longerhave to be orthogonal to lower-lying core states and hence are much smootherthan the all-electron valence states in the core region and have less kineticenergy. Thus the pseudovalence states can be accurately represented by amuch smaller set of plane-wave basis functions than the all-electron states.2



The plane-wave basis state eiq�r is a solution of the Helmholtz equation (thetime-independent free-electron Schr�odinger equation)�r2 + q2� (r) = 0 (1)subject to periodic boundary conditions, with energy E = 12q2 (we use atomicunits throughout.)If instead we wish to localise the basis functions, say within spherical regions ofradius a, so that the function vanishes outside these regions, then appropriateconditions would be to require the functions to be �nite within the regionsand to vanish on the boundary. The solutions to the Helmholtz equation (1)subject to these conditions are then truncated spherical-waves (r) = 8><>: j`(qr) Y`m(#; '); r < a0; r � a (2)where (r; #; ') are spherical polar coordinates with the origin at the centreof the spherical region, ` is a non-negative integer, m is an integer satisfying�` � m � ` and q is chosen to satisfy j`(qa) = 0. j`(x) is a spherical Besselfunction and Y`m(
) is a spherical harmonic. Solutions involving the sphericalvon Neumann function n`(x) have been rejected because they are not �nite atthe centre of the sphere.We note that these functions solve the same equation as the plane-wave basisfunctions, so that within the pseudopotential approximation the wave func-tions will be well-described by a truncated set of these basis functions. More-over, these functions are eigenstates of the kinetic energy operator within thelocalisation region r < a (i.e. in the region in which they will be used to de-scribe the wave functions) with eigenvalue 12q2 so that the same kinetic energycut-o� used to truncate the plane-wave basis can be used here to restrict thevalues of ` and q.Since the Laplacian is a self-adjoint operator under these boundary conditions,application of Sturm-Liouville theory proves that all states within the samespherical region are mutually orthogonal.In a calculation, the electronic states are described by covering the simulationcell with overlapping spheres, usually chosen to be centred on the ions atpositions R�, and expanding the wave functions �� within these spheres inthis basis: ��(r) = Xn`m c�n`m j`(qn` jr�R�j) Y`m(
r�R�): (3)3



The notation 
r is introduced as shorthand for the polar and azimuthal anglesof the vector r used to represent that vector in spherical polar coordinates.We denote the radius of the sphere by r� so that the fqn`g are de�ned byj`(qn`r�) = 0.The expansion (3) is frequently written down formally, but rarely used compu-tationally because of the inconvenience of using spherical Bessel functions innumerical work. However, the analytic results derived in the following sectionso�set this disadvantage.O(N) methods are aimed at large systems, and so the Brillouin zone samplingof the electronic states is usually restricted to the states at the �-point only.The wave functions can then be made real without loss of generality, and soin practice we use real linear combinations of the spherical harmonics de�nedbelow, which does not alter any of the analysis here.fY`mg ! f �Y`mg = 8>>>>><>>>>>: Y`;0(
)1p2 [Y`;�m(
) + (�1)mY`;m(
)]ip2 [Y`;�m(
)� (�1)mY`;m(
)]
9>>>>>=>>>>>; (4)

These real combinations of spherical harmonics, which we denote �Y`m, can bewritten down as real functions of the variables nxr ; yr ; zro where (x; y; z) areCartesian coordinates with origin at the centre of the sphere, and are familiaras the angular components of s, p, d etc. orbitals.We introduce ��n`m(r) to represent a truncated spherical-wave basis functioncentred at the origin and con�ned to a sphere of radius r�:��n`m(r) = 8><>: j`(qn`r) �Y`m(
r); r � r�;0; r > r�: (5)Equation (3) can then be written:��(r) = Xn`m c�n`m ��n`m(r�R�): (6)
3 Fourier transform of the basis functionsWe de�ne the Fourier transform of a basis function ��n`m(r) by4



~��n`m(k)= Zall space d3r eik�r ��n`m(r)= r�Z0 dr r2 j`(qn`r) Z d
 eik�r �Y`m(
): (7)The angular integral is performed by using the expansion of eik�r into spherical-waves (42, Appendix) leaving the radial integral~��n`m(k) = 4�i` �Y`m(
k) r�Z0 dr r2 j`(qn`r) j`(kr): (8)The radial integral can now be calculated using equations (43,44) given inthe Appendix and the boundary conditions (that the basis functions are �niteat r = 0 and vanish at r = r�) for the cases when k 6= qn` and k = qn`respectively. The �nal result for the Fourier transform of a basis function isthen ~��n`m(k) = 4�i` �Y`m(
k)8>>>>>>><>>>>>>>: qn`r2�k2 � q2n` j`(kr�)j`�1(qn`r�); k 6= qn`; (a)qn`r3�k + qn` j 2̀�1(qn`r�); k = qn`: (b) (9)
Equation (9b) is in fact a limiting case of (9a) which can therefore always besubstituted for ~��n`m(k) in an integral over reciprocal-space.4 Overlap matrix elementsThe overlap matrix for any two basis functions ��n`m and ��n0`0m0 centred at R�and R� respectively isS�� = Zall space d3r ��n`m(r�R�)��n0`0m0(r�R�)= Zall space d3r0 ��n`m(r0)��n0`0m0(r0 �R��) (10)where R�� = R� �R�. The dummy variable of integration has been changedin order to highlight the fact that S�� is a function of R�� only. Using a5



variant of the convolution theorem and the fact that the basis functions arereal enables the integral to be rewritten asS�� = 1(2�)3 Zall space d3k e�ik�R�� ~��n`m(k)~��n0`0m0(�k): (11)Using equation (9a) we obtainS�� = �qn`r2�� �qn0`0r2�� j`�1(qn`r�)j`0�1(qn0`0r�) I�� (12)where I�� is the integralI�� = 2� i(`�`0) Z d3k e�ik�R�� j`(kr�) j`0(kr�)(k2 � q2n`) (k2 � q2n0`0) �Y`m(
k) �Y`0m0(
k): (13)Introducing di�erential operators D̂`m, obtained from �Y`m by making the re-placement �xr ; yr ; zr� �! ( @@x�� ; @@y�� ; @@z��)where R�� = (x��; y��; z��) in Cartesian coordinates, equation (13) becomesI�� = 4(�1)` D̂`mD̂`0m0 1Z�1 dk j`(kr�) j`0(kr�) j0(kR��)k(`+`0) (k2 � q2n`) (k2 � q2n0`0) (14)where we have used the fact that the integrand is an even function of k forall values of ` and `0 to change the limits of the integral. From equation (14)I�� no longer appears manifestly symmetric with respect to swapping � and�. Nonetheless, it still is because under the swap f�; `;mg $ f�; `0; m0g,D̂`m ! (�1)`0D̂`0m0 and D̂`0m0 ! (�1)`D̂`m.The three spherical Bessel functions in equation (14) can all be expressed interms of trigonometric functions and algebraic powers of the argument, usingthe recursion rules (40,41, Appendix). The product of three trigonometricfunctions can always be expressed as a sum of four trigonometric functionswith di�erent arguments, using well-known identities. The result is to splitthe integrand up into terms of the following form:sin k (r� � r� � R��)kp (k2 � q2n`) (k2 � q2n0`0) ; p always an odd integer;6



(15)cos k (r� � r� �R��)kp (k2 � q2n`) (k2 � q2n0`0) ; p always an even integer:These terms are individually singular and generally possess a pole of orderp on the real axis at k = 0 and cannot be integrated. However, since weare integrating �nite well-behaved functions we know that the total integrandcannot contain any non-integrable singularities. Therefore we can add extracontributions to each term to cancel all the singularities except simple poles,and all these extra terms must cancel when the terms are added together toobtain the whole integrand.We shall evaluate the integrals using the calculus of residues so that the generalintegral to be performed isI = IC dz eiRzzp (z2 � q2n`) (z2 � q2n0`0) (16)
where R = r� � r� � R�� and the contour C runs along the real z-axis from�1 to +1, and is closed in either the upper or lower half z-plane, dependingupon whether R is positive or negative respectively. Adding the extra termsto regularise the integral we obtain the �nal form of the integralI = IC dz eiRz�Pp�2m=0 (iRz)mm!zp (z2 � q2n`) (z2 � q2n0`0) : (17)
This integrand now has simple poles lying on the contour of integration atz = 0;�qn`;�qn0`0. The residues of these poles are(iR)p�1(p� 1)! q2n` q2n0`0 ; z = 0; (18)e�iqn`R�Pp�2m=0 (�iqn`R)mm!2 (q2n` � q2n0`0) (�qn`)p+1 ; z = �qn` (similarly for z = �qn0`0:)Summing the residues to perform the Cauchy principal value integrals, andtaking real or imaginary parts as appropriate, we obtain the following results:7



1Z�1 dk sin kR + (cancelling terms)kp (k2 � q2n`) (k2 � q2n0`0) =� sgnRq2n` � q2n0`0 24�(�1) p�12 Rp�1(p� 1)! q2n` + (�1) p�12 Rp�1(p� 1)! q2n0`0 + cos qn`Rqp+1n` (19)�cos qn0`0Rqp+1n0`0 � p�3Xm=0; even( (�1)m2 Rmm! qp�m+1n` � (�1)m2 Rmm! qp�m+1n0`0 )35 ;1Z�1 dk cos kR + (cancelling terms)kp (k2 � q2n`) (k2 � q2n0`0) =� sgnRq2n` � q2n0`0 "�(�1) p2 Rp�1(p� 1)! q2n` + (�1) p2 Rp�1(p� 1)! q2n0`0 � sin qn`Rqp+1n` (20)+sin qn0`0Rqp+1n0`0 + p�3Xm=1; odd8<:(�1)m�12 Rmm! qp�m+1n` � (�1)m�12 Rmm! qp�m+1n0`0 9=;35where sgnR = 8><>:�1; R < 0;+1; R � 0: (21)For the case when qn` = qn0`0 , we note that since the integrand in equation(17) must still only have a simple pole at z = �qn` we obtain a simpli�ed formin this special case by taking the limit qn0`0 ! qn` of equations (19,20).1Z�1 dk sin kR + (cancelling terms)kp (k2 � q2n`)2 =� sgnR (�1) p�12 Rp�1(p� 1)! q4n` � (p+ 1)cos qn`R2qp+3n` � Rsin qn`R2qp+2n` (22)+ p�3Xm=0; even (�1)m2 (p�m+ 1)Rm2(m!)qp�m+3n` ;1Z�1 dk cos kR + (cancelling terms)kp (k2 � q2n`)2 =� sgnR (�1) p2Rp�1(p� 1)! q4n` � (p+ 1)sin qn`R2qp+3n` � Rcos qn`R2qp+2n` (23)+ p�3Xm=1; odd (�1)m�12 (p�m+ 1)Rm2(m!)qp�m+3n` :8



The result for S�� is obtained by summing the results in equations (19,20,22,23) for all the terms in the expansion of the integrand (14) and then operatingwith the di�erential operators D̂`m.A second special case occurs when R�� = 0, and in this case it is simplestto perform the integral (10) in real-space using the generalised orthogonalityrelation for spherical Bessel functions (43) when qn` 6= qn0`0.S�� = 1q2n` � q2n0`0 �``0�mm0 8><>:�qn`r2�j`(qn0`0r�)j`�1(qn`r�); r� < r�;qn0`0r2�j`(qn`r�)j`�1(qn0`0r�); r� � r�: (24)There is also the case when R�� = 0 and qn` = qn0`0 which is calculated usingequation (44, Appendix).S�� = 12�``0�mm0 8><>: r3�j 2̀�1(qn`r�); r� < r�;r3�j 2̀�1(qn`r�); r� � r�: (25)Finally, it is obvious that the overlap matrix element must vanish when theseparation of the the sphere centres exceeds the sum of their radii (i.e. R�� >r�+r�) because then there is no region of space where both basis functions arenon-zero. However, this is not obvious from the results presented above, butarises because of the change of sign of the residue sums in equations (19,20,22,23) (denoted by sgnR) which occurs when R�� = r� + r� and results in exactcancellation of all terms.5 Kinetic energy matrix elementsThe kinetic energy matrix elements for any two basis functions ��n`m and ��n0`0m0centred at R� and R� respectively are de�ned byT�� =�12 Zall space d3r��n`m(r�R�)r2��n0`0m0(r�R�)= 12(2�)3 Z d3k k2 e�ik�R�� ~��n`m(k)~��n0`0m0(k): (26)Because of the discontinuity in the �rst derivatives of the basis functions atthe sphere boundaries, a delta-function arises when the Laplacian operates ona basis function. This is integrated out when the matrix element is calculatedand this contribution is included when transforming the real-space integral toreciprocal-space in equation (26). 9



The second line of equation (26) is identical to equation (11) apart from afactor of 12k2. The same separation into individually regular terms can beapplied here, and the result is that we need to calculate the contour integral(17) as before, except that the integer p must be replaced by (p � 2) and anumerical factor of 12 is introduced. The calculation of the residues is identicalto that presented in the previous section, except that the integrand no longeralways has a pole at z = 0 in every term.The results for T�� when R�� = 0 are12�``0�mm0q2n` � q2n0`0 8><>:�q3n`r2�j`(qn0`0r�)j`�1(qn`r�); r� < r�q3n0`0r2�j`(qn`r�)j`�1(qn0`0r�); r� � r� 9>=>; qn` 6= qn0`0; (27)14�``0�mm0q2n`8><>: r3�j 2̀�1(qn`r�); r� < r�r3�j 2̀�1(qn`r�); r� � r� 9>=>; qn` = qn0`0 :The calculation of the kinetic energy has been checked by projecting a set ofwave functions expanded in the spherical-wave basis onto the plane-wave basisusing equation (9a). As the kinetic energy cut-o� for the plane-wave basis isincreased, so the description of the wave functions becomes more accurate.The kinetic energy calculated using the results above can then be comparedagainst the kinetic energy calculated by a plane-wave O(N3) code [2].From the asymptotic behaviour of the spherical Bessel functions, the Fouriertransform (9a) for large k is~��n`m(k) � sin(kr� � `�2 )k3 �Y`m(
k) (28)and so the error in the kinetic energy due to truncating the plane-wave basiswith cut-o� Ecut = 12k2cut is�T � 1Zkcut dk k2 � 1k3� k2 � 1k3� = 1kcut � 1pEcut : (29)In �gure 1 the kinetic energy as calculated by the plane-wave code has beenplotted against 1=pEcut and yields a straight line as expected, which can thenbe extrapolated to obtain an estimate of the kinetic energy calculated forin�nite cut-o�: 60:66�0:01 eV. This is in agreement with the value calculatedanalytically of 60:65 eV. 10
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Fig. 1. Plot of asymptotic �t to kinetic energy data.6 Non-local pseudopotentialThe general form for a semi-local pseudopotential operator (i.e. one which isnon-local in the angular but not radial coordinates) for an ion isV̂NL = X̀m j`miV̂`h`mj (30)where hrj`mi = �Y`m(
) and �Y`m is centred on the ion.The pseudopotential components V` are themselves short-ranged in real-space,and vanish beyond the core radius rc. Therefore the action of the non-localpseudopotential depends only upon the form of the wave functions within thiscore region. We require the matrix elements of the non-local pseudopotentialbetween localised basis functions which are not necessarily centred on the ion.We therefore need to �nd an expansion of the basis functions in terms of func-tions localised within the pseudopotential core. Since the basis functions are allsolutions of the Helmholtz equation, we invoke the uniqueness theorem whichstates that the expansion we seek is uniquely determined by the boundaryconditions on the surface of the core region and solve the Helmholtz equationsubject to these inhomogeneous boundary conditions by the standard methodusing the formal expansion of the Green's function. The result is��n`m(r) = X̀0m0 fn`m`0m0 "1 +Xn0 an`mn0`0 j`0(qn0`0r0)# �Y`0m0(
r0) (31)and is valid for points r0 = r � Rion + R� within the core region (i.e. forr0 � rc.) 11



The coe�cients fn`m`0m0 and an`mn0`0 are de�ned by:
fn`m`0m0 = Zr0=rc d
r0 �Y`0m0(
r0) ��n`m(r0 +Rion �R�); (32)an`mn0`0 = 2r3c j 2̀0�1 (�n0`0rc) 24�n0`0 r2c j`0�1 (�n0`0rc)q2n` � �2n0`0 � rcZ0 dr r2j`0 (�n0`0r)35 : (33)The f�n`g are chosen by j`(�n`rc) = 0 and play the same role as the fqn`g inthe expansion of the wave functions. The integral in equation (33) is straight-forward to evaluate for given `0.The surface integral in equation (32) is evaluated by �rst rotating the coordi-nate system so that the new z-axis is parallel to R� �Rion, thus mixing thespherical harmonics [5]. The elements of the orthogonal spherical harmonicmixing matrices Cm̀m0 are de�ned by the elements of the rotation matrix forthe coordinate system. In the new coordinate system, the surface integral iswritten in terms of a one-dimensional integral
K`0n`m(u; qn`) = 12u "(2`0 + 1)(2`+ 1)(`0 � jmj)!(`� jmj)!(`0 + jmj)!(`+ jmj)!# 12 �min(u+1;r�=rc)Zju�1j dz zP jmj`0  1 + u2 � z22u ! j`(qn`rcz)P jmj`  1� u2 � z22uz !(34)in which the dimensionless variable u = jR��Rionjrc is introduced. P jmj` (x) de-notes an associated Legendre polynomial, and these integrals can all be cal-culated inde�nitely using elementary methods once the integrand is expandedinto trigonometric functions.The �nal result for fn`m`0m0 is thenfn`m`0m0 = min(`;`0)Xm00=�min(`;`0)C`0m00m0K`0n`mCm̀00m: (35)12



De�ning the core matrix elements
Vǹn0 = 8>>>>>>>>>>>><>>>>>>>>>>>>:

rcZ0 dr r2 j`(�n`r)V`(r)j`(�n0`) n; n0 6= 0rcZ0 dr r2 j`(�n`r)V`(r) n 6= 0; n0 = 0rcZ0 dr r2 V`(r) n = n0 = 0 (36)
the matrix element of the non-local pseudopotential operator between any twobasis functions overlapping the core (��n`m and ��n0`0m0) can be written as thesum:VNL;�� = X`00m00 fn`m`00m00fn0`0m0`00m00 "V `0000 +Xn00 �an`mn00`00 + an0`0m0n00`00 �V `00n000+ Xn00n000 an`mn00`00an0`0m0n000`00 V `00n00n000# : (37)The non-local pseudopotential data is therefore stored in terms of the corematrix elements de�ned in equation (37). In �gure 2 we plot the non-localpseudopotential energy against the number of core Bessel functions for an s-local silicon pseudopotential generated according to the scheme of Troullierand Martins [3]. We see that the energy converges rapidly with the num-ber of core Bessel functions used (the dashed line is the energy calculatedwith �fty core functions.) Increasing the number of core functions only in-creases the number of an`mn0`0 coe�cients required, and the separable nature ofthe calculation means that even using �fty core functions requires very littlecomputational e�ort.
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Fig. 2. Non-local pseudopotential energy against number of core Bessel functions.13



7 Computational implementationThe results in equations (19,20,22, 23) have been written in a form which showsthat in general each term can be represented by a real numerical prefactor,integers which are the powers of fR; qn`; qn0`0g and one further integer to sig-nify the presence of one of the terms fsin qn`R; sin qn0`0R; cos qn`R; cos qn0`0Rg.When these terms are combined and di�erentiated by the D̂`m, the generalterm also needs integers to represent powers of fx��; y��; z��; R��; r�; r�g.Therefore a general term in the expressions for S�� and T�� could be rep-resented by a data structure consisting of one real variable g and ten integervariables I1�10 as follows:gxI1��yI2��zI3��RI4f(R)qI5n`qI6n0`0rI7� rI8� RI9�� ! fg; I1; I2; I3; I4; I5; I6; I7; I8; I9; I10g (38)with the following correspondence between f(R) and I10:f(R)= f1; sin qn`R; sin qn0`0R; cos qn`R; cos qn0`0Rg! I10= f0; 1; 2; 3; 4g : (39)A recursive function can be written to manipulate these encoded terms andperform the di�erentiation by the D̂`m, which can themselves be generatedusing the recursion rules for the associated Legendre polynomials. Thus it isstraightforward to write a code which starts from equation (14) and generatesthe results up to arbitrary values of ` for S�� and T�� for the cases whenR�� 6= 0. The results for R�� = 0 are simple enough to be coded within theprogram which uses this basis.We have successfully implemented this basis set in a total-energy pseudopo-tential code and are currently performing preliminary calculations. For a givenionic con�guration the matrix elements between the basis states can be cal-culated initially and stored on disk for use during the calculation.8 ConclusionsWe have shown that it is possible to construct a set of basis functions which aresolutions of the free-electron Schr�odinger equation, subject to being localisedin spherical regions. Basis functions within the same region are mutually or-thogonal, avoiding the problem of the overlap matrix becoming singular whenthe size of the basis set is increased. It is also possible to truncate the basisset using the kinetic energy cut-o� used to truncate the plane-wave basis.14



We have shown in detail how to obtain analytic results for the overlap integralbetween any two basis functions, and presented these in a form which can beimplemented computationally.The same results can be adapted to obtain matrix elements of the kineticenergy operator, providing an e�cient and accurate method of computing thekinetic energy in real space and avoiding the use of �nite di�erence methods.The projection of basis functions onto ionic core angular momentum statescan also be performed analytically so that non-local pseudopotentials can beused.
AppendixIn this section we list some standard results used in the analysis in this paper[4]. j`+1(x) = x̀ j`(x)� j 0̀(x) (40)j`�1(x) = `+ 1x j`(x) + j 0̀(x) (41)eik�r = 4� 1X̀=0 X̀m=�` i` j`(kr) �Y`m(
k) �Y`m(
r) (42)bZa j`(mx)j`(nx)x2 dx= 1m2 � n2 hx2 fnj`(mx)j`�1(nx)�mj`�1(mx)j`(nx)giba (43)bZa j 2̀(mx)x2 dx = 12�x2�xj 2̀(mx) + xj 2̀�1(mx)�2` + 1m j`�1(mx)j`(mx)��ba (44)
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